SURROGATE SEARCH: A SIMULATION OPTIMIZATION METHODOLOGY FOR LARGE-SCALE SYSTEMS

For certain settings in which system performance cannot be evaluated by analytical methods, simulation models are widely utilized. This is especially for complex systems. To try to optimize these models, simulation optimization techniques have been developed. These attempt to identify the system designs and parameters that result in (near) optimal system performance. Although more realistic results can be provided by simulation, the computational time for simulator execution, and consequently, simulation optimization may be very long. Hence, the major challenge in determining improved system designs by incorporating simulation and search methodologies is to develop more efficient simulation optimization heuristics or algorithms. This dissertation develops a new approach, Surrogate Search, to determine near optimal system designs for large-scale simulation problems that contain combinatorial decision variables. First, surrogate objective functions are identified by analyzing simulation results to observe system behavior. Multiple linear regression is utilized to examine simulation results and construct surrogate objective functions. The identified surrogate objective functions, which can be quickly executed, are then utilized as simulator replacements in the search methodologies. For multiple problems containing different settings of the same simulation model, only one surrogate objective function needs to be identified. The development of surrogate objective functions benefits the optimization process by reducing the number of simulation iterations. Surrogate Search approaches are developed for two combinatorial problems, operator assignment and task sequencing, using a large-scale sortation system simulation model. The experimental results demonstrate that Surrogate Search can be applied to such large-scale simulation problems and outperform recognized simulation optimization methodology, Scatter Search (SS). This dissertation provides a systematic methodology to perform simulation optimization for complex operations research problems and contributes to the simulation optimization field.

[1]  Allen Caldwell,et al.  Panel , 1991, 2021 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[2]  Henri Pierreval,et al.  Regression metamodeling for the design of automated manufacturing system composed of parallel machines sharing a material handling resource , 2004 .

[3]  E. A. MacNair,et al.  Application of cluster tool modeling to a 300 mm fab simulation , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[4]  In Lee,et al.  Artificial intelligence search methods for multi-machine two-stage scheduling , 1999, SAC '99.

[5]  Jacques Teghem,et al.  An interactive heuristic method for multi-objective combinatorial optimization , 2000, Comput. Oper. Res..

[6]  Masayuki Matsui,et al.  Optimal design of a generalized conveyor-serviced production station: Fixed and removal item cases , 1998 .

[7]  Alan Scheller-Wolf,et al.  Analysis of cycle stealing with switching times and thresholds , 2005, Perform. Evaluation.

[8]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[9]  Fred W. Glover,et al.  An Experimental Evaluation of a Scatter Search for the Linear Ordering Problem , 2001, J. Glob. Optim..

[10]  Timo Pukkala,et al.  A method for stochastic multiobjective optimization of stand management , 1997 .

[11]  S. Andradóttir Optimization of the transient and steady state behavior of discrete event systems , 1996 .

[12]  Royce Bowden,et al.  Simulation optimization research and development , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[13]  Randall P. Sadowski,et al.  Simulation with Arena , 1998 .

[14]  Pacifico M. Pelagagge,et al.  Performance analysis of automated interbay material-handling and storage systems for large Wafer Fab , 1996 .

[15]  Jaime Trevino,et al.  A flexible simulation tool for manufacturing-cell design, I: model structure, operation, and case study , 2001 .

[16]  Gerald W. Evans,et al.  Multicriteria optimization of simulation models , 1991, 1991 Winter Simulation Conference Proceedings..

[17]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[18]  G. Geoffrey Vining,et al.  Applied Statistics for Engineers and Physical Scientists (2nd ed.). , 1993 .

[19]  K. Heinz Weigl Simulation of a Large-Scale Brewery Distribution System , 1998, Winter Simulation Conference.

[20]  J. Brian Gray,et al.  Introduction to Linear Regression Analysis , 2002, Technometrics.

[21]  D. E. Goldberg,et al.  Genetic Algorithm in Search , 1989 .

[22]  Umar Al-Turki,et al.  A New Dispatching Rule for the Stochastic Single-Machine Scheduling Problem , 2004, Simul..

[23]  Randall P. Sadowski,et al.  Generating component release plans with backward simulation , 1993, WSC '93.

[24]  Mariko Yamamoto,et al.  Combinatorial scheduler: simulation and optimization algorithm , 1991, 1991 Winter Simulation Conference Proceedings..

[25]  Alan Scheller-Wolf,et al.  Exploring Threshold-based Policies for Load Sharing , 2004 .

[26]  S. Andradóttir,et al.  A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization , 1999 .

[27]  Gintaras V. Reklaitis,et al.  A simulation‐optimization framework for research and development pipeline management , 2001 .

[28]  R. Al-Aomar,et al.  A robust simulation-based multicriteria optimization methodology , 2002, Proceedings of the Winter Simulation Conference.

[29]  Sven Kaltenhäuser Tower and airport simulation: flexibility as a premise for successful research , 2003, Simul. Model. Pract. Theory.

[30]  JongKeun Lee,et al.  Using Symbolic DEVS Simulation to Generate Optimal Traffic Signal Timings , 2005, Simul..

[31]  Berna Dengiz,et al.  Computer simulation of a PCB production line: metamodeling approach , 2000 .

[32]  Paul Rogers,et al.  Using Simulation to Make Order Acceptance/Rejection Decisions , 2004, Simul..

[33]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[34]  D. Nazzal,et al.  A simulation-based design framework for automated material handling systems in 300 mm fabrication facilities , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[35]  Santhanam Harit,et al.  Framework for the design and analysis of large scale material handling systems , 1995, WSC '95.

[36]  Marko A. Hofmann Criteria for Decomposing Systems Into Components in Modeling and Simulation: Lessons Learned with Military Simulations , 2004, Simul..

[37]  Farhad Azadivar,et al.  Simulation optimization with qualitative variables and structural model changes: A genetic algorithm approach , 1999, Eur. J. Oper. Res..

[38]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[39]  J. L. Snowdon,et al.  MM WAFER FABRICATION LINE SIMULATION MODEL , 2002 .

[40]  Raminderpal Singh Simulation and Optimization of the Power Distribution Network in VLSI Circuits , 2002 .

[41]  Jorge Haddock,et al.  Simulation optimization using simulated annealing , 1992 .

[42]  Cigdem Alabas-Uslu,et al.  Simulation optimization using tabu search , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).

[43]  K. Ueda,et al.  A genetic algorithm approach to large scale combinatorial optimization problems in the advertising industry , 2001, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597).

[44]  Magnus Morin,et al.  Simulation-Supported Live Training for Emergency Response in Hazardous Environments , 2004 .

[45]  Taho Yang,et al.  Solving a multiresponse simulation problem using a dual-response system and scatter search method , 2005, Simul. Model. Pract. Theory.

[46]  Adam Wierman,et al.  Multi-Server Queueing Systems with Multiple Priority Classes , 2005, Queueing Syst. Theory Appl..

[47]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[48]  Uday K. Chakraborty,et al.  Applying genetic algorithm and simulated annealing to a combinatorial optimization problem , 1997, Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat..

[49]  S. J. Watson,et al.  The optimisation of renewable energy sources in an electrical power system by use of simulation and deterministic planning models , 1996 .

[50]  Detlev Glüer,et al.  MaxFlow theory for availability calculation of automated material handling systems , 2003 .

[51]  J. P. Kelly,et al.  New advances and applications of combining simulation and optimization , 1996, Proceedings Winter Simulation Conference.

[52]  Eric R. Ziegel,et al.  Applied Statistics for Engineers and Physical Scientists , 1992 .

[53]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[54]  Gerald T. Mackulak,et al.  A simulation-based experiment for comparing AMHS performance in a semiconductor fabrication facility , 2001 .

[55]  Roy Rada Networks and their Applications , 1995 .

[56]  Henri Pierreval,et al.  From 'simulation optimization' to 'simulation configuration' of systems , 2003, Simul. Model. Pract. Theory.

[57]  Farhad Azadivar,et al.  Optimization of discrete variable stochastic systems by computer simulation , 1986 .

[58]  In Lee,et al.  A multi-neural-network learning for lot sizing and sequencing on a flow-shop , 2001, SAC.

[59]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[60]  J. P. Kelly,et al.  New advances for wedding optimization and simulation , 1999, WSC'99. 1999 Winter Simulation Conference Proceedings. 'Simulation - A Bridge to the Future' (Cat. No.99CH37038).

[61]  Ye-Sho Chen,et al.  Model-driven Simulation Of World-wide-web Cache Policies , 1997, Winter Simulation Conference Proceedings,.

[62]  Henrique Pacca Loureiro Luna,et al.  Bounds for global optimization of capacity expansion and flow assignment problems , 2000, Oper. Res. Lett..

[63]  Yun Bae Kim,et al.  A Discrete-Continuous Combined Modeling Approach for Supply Chain Simulation , 2002, Simul..

[64]  Gintaras V. Reklaitis,et al.  A simulation—optimization framework for addressing combinatorial and stochastic aspects of an R&D pipeline management problem , 2000 .

[65]  Cheng-Lung Wu,et al.  Modelling of aircraft rotation in a multiple airport environment , 2002 .

[66]  Kevin R. Caskey A manufacturing problem solving environment combining evaluation, search, and generalisation methods , 2001 .

[67]  Leon F. McGinnis,et al.  Distributed Supply Chain Simulation as a Decision Support Tool for the Semiconductor Industry , 2003, Simul..

[68]  Yoh-Han Pao,et al.  Combinatorial optimization with use of guided evolutionary simulated annealing , 1995, IEEE Trans. Neural Networks.

[69]  Christopher D. Carothers,et al.  Complex and interconnected systems: optimistic parallel simulation of a large-scale view storage system , 2001, Online World Conference on Soft Computing in Industrial Applications.

[70]  Jeffrey D. Tew,et al.  Simulation optimization by genetic search , 1994 .

[71]  Balqies Sadoun An Efficient Simulation Methodology for the Design of Traffic Lights at Intersections in Urban Areas , 2003, Simul..

[72]  Tapas K. Das,et al.  A multi-agent reinforcement learning approach to obtaining dynamic control policies for stochastic lot scheduling problem , 2005, Simul. Model. Pract. Theory.

[73]  Jaime Trevino,et al.  A Flexible Simulation Tool for Manufacturing-cell Design , 2001 .

[74]  Jammalamadaka Introduction to Linear Regression Analysis (3rd ed.) , 2003 .

[75]  K. H. Weigle Simulation of a large-scale brewery distribution system , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[76]  F. wieland,et al.  Targeting aviation delay through simulation optimization , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[77]  Douglas A. Bodner,et al.  Automated material handling systems: a simulation-based design framework for automated material handling systems in 300mm fabrication facilities , 2003, WSC '03.

[78]  Russell R. Barton,et al.  Simulation metamodels , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[79]  José Luis González Velarde,et al.  Computing Tools for Modeling, Optimization and Simulation , 2000 .

[80]  H. Pierreval,et al.  Using evolutionary algorithms and simulation for the optimization of manufacturing systems , 1997 .

[81]  Barry L. Nelson,et al.  A combined procedure for optimization via simulation , 2002, Proceedings of the Winter Simulation Conference.

[82]  M. Laguna,et al.  Neural network prediction in a system for optimizing simulations , 2002 .

[83]  Talal M. Alkhamis,et al.  Simulated annealing for discrete optimization with estimation , 1999, Eur. J. Oper. Res..

[84]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[85]  C. Cassandras,et al.  Generalized Surrogate Problem Methodology for Online Stochastic Discrete Optimization , 2002 .

[86]  Mu-Chen Chen,et al.  Optimizing machining economics models of turning operations using the scatter search approach , 2004 .

[87]  Oliver Heckmann,et al.  On realistic network topologies for simulation , 2003, MoMeTools '03.

[88]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[89]  Joseph F. Pekny,et al.  A model predictive framework for planning and scheduling problems: a case study of consumer goods supply chain , 2000 .

[90]  Hossein Arsham,et al.  Algorithms for sensitivity information in discrete-event systems simulation , 1998, Simul. Pract. Theory.

[91]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[92]  Frédéric Wurtz,et al.  A Component-Based Framework for the Composition of Simulation Software Modeling Electrical Systems , 2004, Simul..

[93]  Enver Yücesan,et al.  Common issues in discrete optimization and discrete-event simulation , 2002, IEEE Trans. Autom. Control..

[94]  Javier Otamendi GESAS II: A Better Relationship between Efficiency and Efficacy While Experimenting with Simulation Models , 2004, Simul..

[95]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[96]  Peter Köchel,et al.  Kanban optimization by simulation and evolution , 2002 .

[97]  Christopher D. Geiger,et al.  The parcel hub scheduling problem: A simulation-based solution approach , 2005, Comput. Ind. Eng..

[98]  S. Andradóttir A method for discrete stochastic optimization , 1995 .

[99]  Mariko Yamamoto,et al.  Combinatorial scheduler: simulation & optimization algorithm , 1991, Winter Simulation Conference.

[100]  S. D. Hill,et al.  Simulation optimization of airline delay with constraints , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[101]  Zbigniew Michalewicz,et al.  Genetic Algorithms Plus Data Structures Equals Evolution Programs , 1994 .

[102]  Jerry Banks,et al.  Panel session: the future of simulation , 2001 .

[103]  Johan Hellstrand,et al.  Solving the Uncapacitated Network Design Problem by a Lagrangean Heuristic and Branch-and-Bound , 1998, Oper. Res..

[104]  Yoke San Wong,et al.  On the role of a queueing network model in the design of a complex assembly system , 1998 .

[105]  Christopher D. Carothers,et al.  Optimistic parallel simulation of a large-scale view storage system , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[106]  John R. English,et al.  A modular simulation approach for automated material handling systems , 1999, Simul. Pract. Theory.

[107]  Wayne L. Winston Operations research: applications and algorithms / Wayne L. Winston , 2004 .

[108]  Todd LeBaron,et al.  Using emulation to validate a cluster tool simulation model , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).

[109]  Robert Allen Kilmer Artificial neural network metamodels of stochastic computer simulations , 1994 .

[110]  Sigrún Andradóttir,et al.  Simulation Optimization: Integrating Research and Practice , 2002, INFORMS J. Comput..

[111]  Jaime Trevino,et al.  A flexible simulation tool for manufacturing-cell design, II: response surface analysis and case study , 2001 .

[112]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[113]  Deborah J. Medeiros,et al.  Simulation of flexible control strategies , 1995, WSC '95.

[114]  Averill M. Law,et al.  Simulation-based optimization , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).

[115]  Gordon M. Clark,et al.  Order release planning in a job shop using a bi-directional simulation algorithm , 1994, Proceedings of Winter Simulation Conference.

[116]  Sigrún Andradóttir,et al.  A review of simulation optimization techniques , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[117]  Fred Glover,et al.  Practical introduction to simulation optimization , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[118]  Philip J. Koopman A TAXONOMY OF DECOMPOSITION STRATEGIES BASED ON STRUCTURES, BEHAVIORS, AND GOALS , 1995 .

[119]  J. Banks,et al.  Discrete-Event System Simulation , 1995 .

[120]  R.P. Sadowski,et al.  A Simulation-based Backward Planning Approach For Order-release , 1997, Winter Simulation Conference Proceedings,.