Central suboptimal mean-square H ∞ controller design for linear stochastic time-varying systems

This article designs the central finite-dimensional H ∞ controller for linear stochastic time-varying systems with integral-quadratically bounded deterministic disturbances, that is suboptimal for a given threshold γ with respect to a modified Bolza–Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, this article reduces the original H ∞ controller problem to the corresponding optimal H 2 controller problem, using the technique proposed in Doyle et al. (Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A. (1989), ‘State-space Solutions to Standard H 2 and H ∞ Control Problems’, IEEE Transactions on Automatic Control, 34, 831–847). Numerical simulations are conducted to verify the performance of the designed controller for a linear stochastic system against the central suboptimal H ∞ controller available for the corresponding deterministic system.

[1]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[2]  Sing Kiong Nguang,et al.  GLOBAL ROBUSTH∞ CONTROL OF A CLASS OF NONLINEAR SYSTEMS , 1998 .

[3]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[4]  Michael V. Basin,et al.  Alternative optimal filter for linear systems with multiple state and observation delays , 2008, 2008 47th IEEE Conference on Decision and Control.

[5]  Zidong Wang,et al.  Robust H∞ control for a class of nonlinear stochastic systems with mixed time delay , 2007 .

[6]  M. Konishi,et al.  Optimal Water Cooling Control for Plate Rolling , 2007, Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007).

[7]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[8]  J. Janssen,et al.  Deterministic and Stochastic Optimal Control , 2013 .

[9]  Yuanqing Xia,et al.  Delay-dependent robust ℋ ∞ control for uncertain stochastic time-delay system , 2008, Int. J. Syst. Sci..

[10]  Chin Wen Liao,et al.  A DELAY-DEPENDENT APPROACH TO DESIGN STATE ESTIMATOR FOR DISCRETE STOCHASTIC RECURRENT NEURAL NETWORK WITH INTER V AL TIME-V ARYING DELAYS , 2009 .

[11]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[12]  Lihua Xie,et al.  On designing controllers for a class of uncertain sampled-data nonlinear systems , 1993 .

[13]  Wei Xing Zheng,et al.  ${\cal L}_{2}$– ${\cal L}_{\infty}$ Control of Nonlinear Fuzzy ItÔ Stochastic Delay Systems via Dynamic Output Feedback , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Zidong Wang,et al.  Discrete bilinear stochastic systems with time-varying delay: Stability analysis and control synthesis , 2007 .

[15]  Daniel W. C. Ho,et al.  Fuzzy Filter Design for ItÔ Stochastic Systems With Application to Sensor Fault Detection , 2009, IEEE Transactions on Fuzzy Systems.

[16]  Shengyuan Xu,et al.  Design of observers for a class of discrete-time uncertain nonlinear systems with time delay , 2004, J. Frankl. Inst..

[17]  L. Guo,et al.  Robust H ∞ performance problem for linear systems with nonlinear uncertainties in all system matrices , 2002, Int. J. Syst. Sci..

[18]  Ramesh K. Agarwal,et al.  Controller design for bilinear systems with parametric uncertainties , 1999 .

[19]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[20]  Daniel W. C. Ho,et al.  Robust H∞ control for a class of nonlinear discrete time-delay stochastic systems with missing measurements , 2009, Autom..

[21]  Shengyuan Xu,et al.  Robust H∞ control for uncertain stochastic systems with state delay , 2002, IEEE Trans. Autom. Control..

[22]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[23]  Ligang Wu,et al.  Reduced-order L 2 -L/ ∞ filtering for a class of nonlinear switched stochastic systems , 2009 .

[24]  Feng-Hsiag Hsiao Robust H ∞ fuzzy control of nonlinear systems with multiple time delays , 2007, Int. J. Syst. Sci..

[25]  Michael V. Basin,et al.  Optimal filtering for linear states over polynomial observations , 2007, 2007 46th IEEE Conference on Decision and Control.

[26]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .