Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration

This paper presents multipoint high-fidelity aerostructural optimizations of a long-range wide-body transonic transport aircraft configuration. The aerostructural analysis employs Euler computational fluid dynamics with a 2-million-cell mesh and a structural finite-element model with 300,000 degrees of freedom. The coupled adjoint sensitivity method is used to efficiently compute gradients, enabling the use of gradient-based optimization with respect to hundreds of aerodynamic shape and structural sizing variables. The NASA Common Research Model is used as the baseline configuration, together with a wing box structure that was designed for this study. Two design optimization problems are solved: one where takeoff gross weight is minimized, and another where fuel burn is minimized. Each optimization uses a multipoint formulation with five cruise conditions and two maneuver conditions. Each of the optimization problems have 476 design variables, including wing planform, airfoil shape, and structural thickne...

[1]  Joaquim R. R. A. Martins,et al.  Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy , 2014 .

[2]  S. I. Pai,et al.  Some Aeroelastic Properties of Swept Wings , 1949 .

[3]  J. Martins,et al.  Multipoint Aerodynamic Shape Optimization Investigations of the Common Research Model Wing , 2015 .

[4]  C. Mader,et al.  Stability-Constrained Aerodynamic Shape Optimization of Flying Wings , 2013 .

[5]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[6]  Joaquim R. R. A. Martins,et al.  RANS-based Aerodynamic Shape Optimization of a Blended-Wing-Body Aircraft , 2013 .

[7]  T. Pulliam,et al.  Multipoint and Multi-Objective Aerodynamic Shape Optimization , 2002 .

[8]  Charbel Farhat,et al.  Matching fluid and structure meshes for aeroelastic computations : a parallel approach , 1995 .

[9]  C. Mader,et al.  Computing Stability Derivatives and Their Gradients for Aerodynamic Shape Optimization , 2014 .

[10]  Jason E. Hicken,et al.  Aerodynamic Optimization Algorithm with Integrated Geometry Parameterization and Mesh Movement , 2010 .

[11]  Joaquim R. R. A. Martins,et al.  A laminate parametrization technique for discrete ply-angle problems with manufacturing constraints , 2013 .

[12]  J. Alonso,et al.  A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .

[13]  R. Dwight,et al.  Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches , 2010 .

[14]  Joaquim R. R. A. Martins,et al.  Large-Scale Multidisciplinary Optimization of a Small Satellite’s Design and Operation , 2014 .

[15]  John T. Hwang,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models , 2013 .

[16]  Joaquim R. R. A. Martins,et al.  A parallel aerostructural optimization framework for aircraft design studies , 2014 .

[17]  Philip L. Roe,et al.  Understanding Aerodynamics: Arguing from the Real Physics , 2014 .

[18]  Joaquim R. R. A. Martins,et al.  pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization , 2011, Structural and Multidisciplinary Optimization.

[19]  Joaquim R. R. A. Martins,et al.  Multi-point, multi-mission, high-fidelity aerostructural optimization of a long-range aircraft configuration , 2012 .

[20]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[21]  Joaquim R. R. A. Martins,et al.  Multimission Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization , 2015 .

[22]  Joaquim R. R. A. Martins,et al.  Aerostructural Optimization of Nonplanar Lifting Surfaces , 2010 .

[23]  Antoine DeBlois,et al.  Multi-Fidelity Multidisciplinary Design Optimization of Metallic and Composite Regional and Business Jets , 2010 .

[24]  David W. Zingg,et al.  A Novel Aerodynamic Shape Optimization Approach for Three-Dimensional Turbulent Flows , 2012 .

[25]  Stephen A. Andrews,et al.  Wing weight model for conceptual design of nonplanar configurations , 2015 .

[26]  Tobias Wunderlich,et al.  Multidisciplinary wing optimization of commercial aircraft with consideration of static aeroelasticity , 2015 .

[27]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary aerospace design optimization - Survey of recent developments , 1996 .

[28]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[29]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[30]  Gregory A. Wrenn,et al.  An indirect method for numerical optimization using the Kreisselmeir-Steinhauser function , 1989 .

[31]  Daniel J Poole,et al.  Simulation and surrogate-based design of rectangular vortex generators for tiltrotor aircraft wings , 2015 .

[32]  R. M. Hicks,et al.  Single-Point and Multipoint Aerodynamic Shape Optimization of High-Speed Civil Transport , 2001 .

[33]  Daniel A. Tortorelli,et al.  Improved multi‐level Newton solvers for fully coupled multi‐physics problems , 2003 .

[34]  V. B. Venkayya,et al.  Structural optimization: A review and some recommendations , 1978 .

[35]  Raphael T. Haftka,et al.  Structural optimization complexity: what has Moore’s law done for us? , 2004 .

[36]  John C. Vassberg,et al.  Development of a Common Research Model for Applied CFD Validation Studies , 2008 .

[37]  Gerald Kress,et al.  Mass estimation of transport aircraft wingbox structures with a CAD/CAE-based multidisciplinary process , 2011 .

[38]  Joaquim R. R. A. Martins,et al.  An adaptive approach to constraint aggregation using adjoint sensitivity analysis , 2007 .

[39]  Charbel Farhat,et al.  Sensitivity analysis and design optimization of three‐dimensional non‐linear aeroelastic systems by the adjoint method , 2003 .

[40]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[41]  Ramji Kamakoti,et al.  Fluid–structure interaction for aeroelastic applications , 2004 .

[42]  Joaquim R. R. A. Martins,et al.  Surrogate models and mixtures of experts in aerodynamic performance prediction for aircraft mission analysis , 2015 .

[43]  Georgi Kalitzin,et al.  Unsteady turbomachinery computations using massively parallel platforms , 2006 .

[44]  李幼升,et al.  Ph , 1989 .

[45]  Joaquim R. R. A. Martins,et al.  A matrix-free augmented lagrangian algorithm with application to large-scale structural design optimization , 2015, Optimization and Engineering.

[46]  Joaquim R. R. A. Martins,et al.  Multidisciplinary design optimization: A survey of architectures , 2013 .

[47]  Carol D. Wieseman,et al.  Trim and Structural Optimization of Subsonic Transport Wings using Nonconventional Aeroelastic Tailoring , 2014 .

[48]  Richard B Skoog,et al.  A method for the determination of the spanwise load distribution of a flexible swept wing at subsonic speeds , 1951 .

[49]  S. Brown,et al.  Displacement extrapolations for CFD+CSM aeroelastic analysis , 1997 .

[50]  E. J. Hopkins Charts for predicting turbulent skin friction from the Van Driest method (2) , 1972 .

[51]  Joaquim R. R. A. Martins,et al.  An asymmetric suboptimization approach to aerostructural optimization , 2009 .

[52]  Masoud Rais-Rohani,et al.  Integrated aerodynamic-structural design of a transport wing , 1989 .

[53]  V. Buonadonna,et al.  Thermochemical generation of CS for CO chemical lasers , 1976 .

[54]  Thomas A. Reist,et al.  Drag Minimization Based on the Navier–Stokes Equations Using a Newton–Krylov Approach , 2015 .

[55]  Cody A. Paige,et al.  Automatic Differentiation Adjoint of the Reynolds-Averaged Navier-Stokes Equations with a Turbulence Model , 2013 .

[56]  Joaquim R. R. A. Martins,et al.  Parallel Solution Methods for Aerostructural Analysis and Design Optimization , 2010 .

[57]  O. Pironneau On optimum design in fluid mechanics , 1974 .

[58]  Mohammad Abu-Zurayk,et al.  Development and application of multi-disciplinary optimization capabilities based on high-fidelity methods , 2012 .

[59]  Joaquim R. R. A. Martins,et al.  Aerodynamic Design Optimization Studies of a Blended-Wing-Body Aircraft , 2014 .

[60]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark , 2015 .

[61]  C. Ilic,et al.  DLR project Digital-X: towards virtual aircraft design and flight testing based on high-fidelity methods , 2015, CEAS Aeronautical Journal.

[62]  Joaquim R. R. A. Martins,et al.  High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet , 2002 .

[63]  Michel van Tooren,et al.  Coupled adjoint aerostructural wing optimization using quasi-three-dimensional aerodynamic analysis , 2016 .

[64]  Joaquim R. R. A. Martins,et al.  Review and Unification of Methods for Computing Derivatives of Multidisciplinary Systems , 2012 .

[65]  Joaquim R. R. A. Martins,et al.  A Comparison of Metallic and Composite Aircraft Wings Using Aerostructural Design Optimization , 2012 .

[66]  François Gallard,et al.  An Adaptive Multipoint Formulation for Robust Parametric Optimization , 2015, J. Optim. Theory Appl..

[67]  J. Alonso,et al.  Aero-Structural Wing Design Optimization Using High-Fidelity Sensitivity Analysis , 2001 .

[68]  Cameron Robertson,et al.  Design and Development of the Atlas Human-Powered Helicopter , 2015 .

[69]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization of an Adaptive Morphing Trailing-Edge Wing , 2015 .

[70]  R. Dwight,et al.  Efficient and robust algorithms for solution of the adjoint compressible Navier–Stokes equations with applications , 2009 .

[71]  Joaquim R. R. A. Martins,et al.  A CAD-Free Approach to High-Fidelity Aerostructural Optimization , 2010 .

[72]  Robert C. Scott,et al.  Aeroelastic Analysis of SUGAR Truss-Braced Wing Wind-Tunnel Model Using FUN3D and a Nonlinear Structural Model , 2015 .

[73]  Antony Jameson,et al.  Multi-point Wing Planform Optimization via Control Theory , 2005 .

[74]  Jean-Antoine Désidéri,et al.  Aerostructural Adjoint Method for Flexible Wing Optimization , 2012 .

[75]  Holt Ashley,et al.  On Making Things the Best-Aeronautical Uses of Optimization , 1982 .

[76]  Joaquim R. R. A. Martins,et al.  Geometry and structural modeling for high-fidelity aircraft conceptual design optimization , 2014 .

[77]  Doug McLean Wingtip Devices : What They Do and How They Do , 2005 .

[78]  Eli Livne,et al.  Future of Airplane Aeroelasticity , 2003 .

[79]  E. Torenbeek,et al.  Synthesis of Subsonic Airplane Design , 1979 .

[80]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization of Common Research Model Wing–Body–Tail Configuration , 2016 .

[81]  Raphael T. Haftka,et al.  Integrated aerodynamic/structural design of a sailplane wing , 1986 .

[82]  K. Maute,et al.  A Schur–Newton–Krylov solver for steady-state aeroelastic analysis and design sensitivity analysis , 2006 .

[83]  Askin T. Isikveren,et al.  Preliminary Aerostructural Optimization of a Large Business Jet , 2007 .

[84]  Joaquim R. R. A. Martins,et al.  Comparison of inexact- and quasi-Newton algorithms for aerodynamic shape optimization , 2015 .

[85]  Franklin W Diederich Calculation of the aerodynamic loading of flexible wings of arbitrary plan form and stiffness , 1948 .

[86]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[87]  Raphael T. Haftka,et al.  Optimization of Flexible Wing Structures Subject to Strength and Induced Drag Constraints , 1977 .

[88]  Ching-Hsing Yu,et al.  SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre , 2010 .

[89]  Dimitri J. Mavriplis,et al.  Development of a High-Fidelity Time-Dependent Aero-Structural Capability for Analysis and Design , 2016 .

[90]  Edward J. Haug,et al.  Optimal design of dynamically loaded continuous structures , 1978 .