The relationship between enhanced dielectric property and structural distortion in Ca doped Ba2NaNb5O15 tungsten bronze ceramics

[1]  Y. Pu,et al.  Colossal permittivity and low dielectric loss in Ta doped strontium titanate ceramics by designing defect chemistry , 2020 .

[2]  Y. Pu,et al.  Enhanced energy storage and fast charge-discharge capability in Ca0.5Sr0.5TiO3-based linear dielectric ceramic , 2020 .

[3]  Zupei Yang,et al.  Effects of A-site cations on the electrical behaviors in (Sr1-Ca )2.1Na0.8Nb5O15 tungsten bronze ferroelectrics , 2020 .

[4]  Y. Pu,et al.  Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability , 2020 .

[5]  Y. Pu,et al.  A novel lead-free NaNbO3–Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability , 2020 .

[6]  Y. Pu,et al.  Strong non-volatile voltage control of magnetization and the magnetodielectric properties in polymer-based sandwich-structured composites , 2020 .

[7]  Zhuo Wang,et al.  Progress, Outlook, and Challenges in Lead‐Free Energy‐Storage Ferroelectrics , 2019, Advanced Electronic Materials.

[8]  Yingchun Zhang,et al.  Effects of ZBS glass addition on sintering behavior and properties of Ba6−3x(Sm1−yBiy)8+2xTi18O54(x = 2/3, y = 0.1) microwave dielectric ceramics , 2019, Journal of Materials Science: Materials in Electronics.

[9]  Y. Pu,et al.  Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 relaxor ferroelectrics , 2019, Journal of Alloys and Compounds.

[10]  X. Dong,et al.  Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy , 2018 .

[11]  Khalid Mujasam Batoo,et al.  Impact of copper substitution on the structural, ferroelectric and magnetic properties of tungsten bronze ceramics , 2018 .

[12]  Tian Wang,et al.  Enhanced single-phased multiferroic properties of Ca-doped filled tetragonal tungsten bronze Ba4Sm2Fe2Nb8O30 ceramics , 2018, Journal of Materials Science: Materials in Electronics.

[13]  Y. Pu,et al.  Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications , 2017 .

[14]  X. Chao,et al.  Electrical and transparent properties induced by structural modulation in (Sr0.925Ca0.075)2.5–0.5xNa xNb5O15 ceramics , 2017 .

[15]  X. Chao,et al.  Structure and Electrical Properties of Sr1.85Ca0.15NaNb5O15 Ceramics with Addition of Multivalence Oxides (MnO2, PbO2) , 2017, Journal of Electronic Materials.

[16]  Zupei Yang,et al.  Variation of electrical properties with structural vacancies in ferroelectric niobates (Sr0.53Ba0.47)2.5−0.5xNaxNb5O15 ceramics , 2016 .

[17]  H. Yan,et al.  Lead free Bi3TaTiO9 ferroelectric ceramics with high Curie point , 2016 .

[18]  Lingling Wei,et al.  B-cation effect on relaxor behavior and electric properties in Sr2NaNb5−xSbxO15 tungsten bronze ceramics , 2016 .

[19]  J. Deng,et al.  Structure and oxide ion conductivity in tetragonal tungsten bronze BaBiNb5O15 , 2015 .

[20]  Ting Zhang,et al.  Phase formation, dielectric and ferroelectric properties of CaxBa1−xNb2O6 ceramics , 2013 .

[21]  Xiao Li Zhu,et al.  Re-entrant relaxor behavior of Ba5RTi3Nb7O30 (R = La, Nd, Sm) tungsten bronze ceramics , 2013 .

[22]  Fuqiang Huang,et al.  The intrinsically red luminescence of tungsten bronze compound EuK2Nb5O15 for light emitting diodes , 2012 .

[23]  J. Schreuer,et al.  Thermally induced structural changes in incommensurate calcium barium niobate Ca{sub 0.28}Ba{sub 0.72}Nb{sub 2}O{sub 6} (CBN28) , 2012 .

[24]  B. Ploss,et al.  Phase transitions and electrical characterizations of (K0.5Na0.5)2x(Sr0.6Ba0.4)5−xNb10O30 (KNSBN) ceramics with ‘unfilled’ and ‘filled’ tetragonal tungsten–bronze (TTB) crystal structure , 2012 .

[25]  Fuqiang Huang,et al.  Effect of structural packing on the luminescence properties in tungsten bronze compounds M2KNb5O15 (M=Ca, Sr, Ba) , 2012 .

[26]  Xiao Li Zhu,et al.  Effects of Ca-substitution on structural, dielectric, and ferroelectric properties of Ba5SmTi3Nb7O30 tungsten bronze ceramics , 2012 .

[27]  Yi-jian Jiang,et al.  Structure and electrical properties of MnO2-doped Sr2−xCaxNaNb5O15 lead-free piezoelectric ceramics , 2011 .

[28]  Xiao Li Zhu,et al.  Dielectric and Ferroelectric Characteristics of Ba5NdFe1.5Nb8.5O30 Tungsten Bronze Ceramics , 2010 .

[29]  Zupei Yang,et al.  The Phase Formation, Microstructure, and Electric Properties of Tungsten Bronze Ferroelectric Sr2NaNb5O15 Ceramics , 2010 .

[30]  Xiao Li Zhu,et al.  Dielectric relaxations, ultrasonic attenuation, and their structure dependence in Sr_4(La_xNd_1-x)_2Ti_4Nb_6O_30 tungsten bronze ceramics , 2008 .

[31]  Xiao Li Zhu,et al.  Dielectric relaxation and ultrasonic attenuation of Sr4La2Ti4Nb6O30 tungsten bronze ceramics , 2007 .

[32]  Li-hui Zhu,et al.  Comparison of formation behavior of Ba2NaNb5O15 in air and molten NaCI salt , 2004 .

[33]  K. Yoon,et al.  Review: Review of electrooptic and ferroelectric properties of barium sodium niobate single crystals , 2003 .

[34]  M. Kimura,et al.  Temperature Characteristics of (Ba1-xSrx)2NaNb5O15 Ceramics , 1997 .

[35]  Haruhiko Suzuki,et al.  Ferroelectric properties of Ba2NaNb5(1–x)Ta5xo15 , 1994 .

[36]  D. Paquet Cooperative pseudo‐Jahn–Teller model for the sequence of ferroelastic transitions in barium sodium niobate , 1977 .

[37]  J. Schneck,et al.  Diffused ferroelastic phase transition in barium sodium niobate , 1975 .

[38]  Y. Pu,et al.  High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics , 2020 .

[39]  Y. Pu,et al.  Ultra-high energy storage performance under low electric fields in Na0.5Bi0.5TiO3-based relaxor ferroelectrics for pulse capacitor applications , 2020 .

[40]  M. Ferriol Crystal growth and structure of pure and rare-earth doped barium sodium niobate (BNN) , 2001 .

[41]  J. Schneck,et al.  Mechanism of the ferroelastic transition in barium sodium niobate , 1976 .