A biomass estimate over the harvard forest using field measurements with radar and lidar data

The National Research Council's decadal survey recommended DESDynI as one of the high priority missions for NASA. The mission envisions an InSAR/Lidar instrument for observing ecosystem structures on global scales with high spatial resolutions. Consistent and highly resolved global maps of biomass and carbon stocks require highly accurate observations of vegetation, in fact it is expected that such accuracies would require a combination of the high vertical precision of Lidar observations and the large spatial extent of SAR/InSAR measurements. Here we analyze radar backscatter data along with biomass estimates from a field campaign conducted in the Harvard forest in Massachusetts, USA.

[1]  Lars M. H. Ulander,et al.  C-band repeat-pass interferometric SAR observations of the forest , 1997, IEEE Trans. Geosci. Remote. Sens..

[2]  John D. Vona,et al.  Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets , 2004 .

[3]  Anthony Freeman,et al.  DESDYNI - A NASA MISSION FOR ECOSYSTEMS, SOLID EARTH, AND CRYOSPHERE SCIENCE , 2009 .

[4]  Shane Cloude,et al.  The structure of oriented vegetation from polarimetric interferometry , 1999, IEEE Trans. Geosci. Remote. Sens..

[5]  Keqi Zhang,et al.  Mapping Height and Biomass of Mangrove Forests in Everglades National Park with SRTM Elevation Data , 2006 .

[6]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[7]  Lars M. H. Ulander,et al.  Radiometric slope correction of synthetic-aperture radar images , 1996, IEEE Trans. Geosci. Remote. Sens..

[8]  W. Walker,et al.  Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy , 2006 .

[9]  Josef Kellndorfer,et al.  Quality assessment of SRTM C- and X-band interferometric data: Implications for the retrieval of vegetation canopy height , 2007 .

[10]  Richard A. Birdsey,et al.  Comprehensive database of diameter-based biomass regressions for North American tree species , 2004 .

[11]  K. Jon Ranson,et al.  Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[12]  Michael Freilich,et al.  Committee on Earth Science and Applications from Space , 2012 .

[13]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[14]  Christiane Schmullius,et al.  Properties of ERS-1/2 coherence in the Siberian boreal forest and implications for stem volume retrieval , 2007 .

[15]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[16]  S. Cloude Polarization coherence tomography , 2006 .

[17]  M. Ter-Mikaelian,et al.  Biomass equations for sixty-five North American tree species , 1997 .

[18]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[20]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995, IEEE Transactions on Geoscience and Remote Sensing.