Multiscale hydro-thermo-chemo-mechanical coupling: Application to alkali–silica reaction

[1]  K. Day,et al.  Aggregates for concrete , 2013 .

[2]  Gianluca Cusatis,et al.  Lattice Discrete Particle Modeling (LDPM) of Alkali Silica Reaction (ASR) deterioration of concrete structures , 2013 .

[3]  A. Ghosh,et al.  Computational modeling of fracture in concrete using a meshfree meso-macro-multiscale method , 2013 .

[4]  P. Wriggers,et al.  On the optimality of the window method in computational homogenization , 2013 .

[5]  Claudia Comi,et al.  Two-phase damage modeling of concrete affected by alkali–silica reaction under variable temperature and humidity conditions , 2012 .

[6]  Alexander Düster,et al.  Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains , 2012, Comput. Math. Appl..

[7]  Bernhard A. Schrefler,et al.  Modeling alkali–silica reaction in non-isothermal, partially saturated cement based materials , 2012 .

[8]  Alain Ehrlacher,et al.  A computational linear elastic fracture mechanics-based model for alkali–silica reaction , 2012 .

[9]  L. Struble,et al.  Modeling Alkali-Silica Reaction Using Image Analysis and Finite Element Analysis , 2011 .

[10]  D. Little,et al.  Experimental Measurement of Water Diffusion through Fine Aggregate Mixtures , 2011 .

[11]  Mingzhong Zhang,et al.  Microstructure-based modeling of water diffusivity in cement paste , 2011 .

[12]  Ignacio Carol,et al.  Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model , 2011 .

[13]  Peter Wriggers,et al.  Homogenization in finite thermoelasticity , 2011 .

[14]  Karen Scrivener,et al.  Micro-mechanical modelling of alkali–silica-reaction-induced degradation using the AMIE framework , 2010 .

[15]  Pierre-Olivier Bouchard,et al.  Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction , 2009 .

[16]  Peter Wriggers,et al.  A finite deformation brick element with inhomogeneous mode enhancement , 2009 .

[17]  Alain Sellier,et al.  Chemo-mechanical modeling for prediction of alkali silica reaction (ASR) expansion , 2009 .

[18]  Claudia Comi,et al.  A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction , 2009 .

[19]  F. Martínez-Abella,et al.  Mechanical behavior model for ASR-affected dam concrete under service load: formulation and verification , 2009 .

[20]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[21]  P. Wriggers,et al.  Numerical homogenization of hardened cement paste , 2008 .

[22]  S. Eckardt,et al.  Adaptive Damage Simulation of Concrete Using Heterogeneous Multiscale Models , 2008 .

[23]  P. Wriggers,et al.  A macro-element for incompressible finite deformations based on a volume averaged deformation gradient , 2008 .

[24]  Peter Wriggers,et al.  Computational homogenization of micro-structural damage due to frost in hardened cement paste , 2008 .

[25]  T. Ichikawa,et al.  Modified model of alkali-silica reaction , 2007 .

[26]  Karen L. Scrivener,et al.  Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis , 2007 .

[27]  O. Batic,et al.  Different manifestations of the alkali-silica reaction in concrete according to the reaction kinetics of the reactive aggregate , 2006 .

[28]  Victor E. Saouma,et al.  Constitutive Model for Alkali-Aggregate Reactions , 2006 .

[29]  P. Wriggers,et al.  Mesoscale models for concrete: homogenisation and damage behaviour , 2006 .

[30]  E. Denarié,et al.  Chracterization of Creep and Crack Growth Interactions in the Fracture Behavior of Concrete , 2006 .

[31]  M. García-Díaz,et al.  MECHANISM OF DAMAGE FOR THE ALKALI-SILICA REACTION: RELATIONSHIPS BETWEEN SWELLING AND REACTION DEGREE , 2006 .

[32]  Franz-Josef Ulm,et al.  Micromechanics investigation of expansive reactions in chemoelastic concrete , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[34]  E. Fairbairn,et al.  Modelling the structural behaviour of a dam affected by alkali–silica reaction , 2005 .

[35]  J. Phair,et al.  Elastic and structural properties of alkaline-calcium silica hydrogels , 2005 .

[36]  Peter Wriggers,et al.  An Introduction to Computational Micromechanics , 2004 .

[37]  Nizar Smaoui,et al.  Evaluation of the expansion attained to date by concrete affected by alkali-silica reaction. Part I: Experimental study , 2004 .

[38]  Günther Meschke,et al.  Chemo‐hygro‐mechanical modelling and numerical simulation of concrete deterioration caused by alkali‐silica reaction , 2004 .

[39]  José L. D. Alves,et al.  MACROSCOPIC MODEL OF CONCRETE SUBJECTED TO ALKALI-AGGREGATE REACTION , 2004 .

[40]  Tarek I. Zohdi,et al.  Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids , 2004 .

[41]  Alain Sellier,et al.  Orthotropic modelling of alkali-aggregate reaction in concrete structures: numerical simulations , 2003 .

[42]  J. Fish,et al.  Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem , 2002 .

[43]  M. Deng,et al.  A new accelerated method for determining the potential alkali-carbonate reactivity , 2002 .

[44]  G. M. Idorn A discussion of the paper “Mathematical model for kinetics of alkali–silica reaction in concrete” by Zdenek P. Bazant and Alexander Steffens ☆ , 2001 .

[45]  S. Diamond The relevance of laboratory studies on delayed ettringite formation to DEF in field concretes , 2000 .

[46]  Olivier Coussy,et al.  Thermo-chemo-mechanics of ASR expansion in concrete structures , 2000 .

[47]  Alexander Steffens,et al.  Mathematical model for kinetics of alkali-silica reaction in concrete , 2000 .

[48]  Christian Meyer,et al.  Fracture Mechanics of ASR in Concretes with Waste Glass Particles of Different Sizes , 2000 .

[49]  S. Pietruszczak,et al.  Numerical analysis of concrete structures subjected to alkali‐aggregate reaction , 1996 .

[50]  Pierre Léger,et al.  Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams , 1996 .

[51]  S. Pietruszczak,et al.  ON THE MECHANICAL BEHAVIOUR OF CONCRETE SUBJECTED TO ALKALI-AGGREGATE REACTION , 1996 .

[52]  Luc Taerwe,et al.  Random particle model for concrete based on Delaunay triangulation , 1993 .

[53]  P. Wriggers,et al.  Computational thermal homogenization of concrete , 2013 .

[54]  Paul Steinmann,et al.  MULTISCALE PARAMETER IDENTIFICATION , 2012 .

[55]  Upender Kodide Thermal conductivity and its effects on the performance of PCC pavements in MEPDG , 2010 .

[56]  Cyrille F. Dunant,et al.  Experimental and modelling study of the alkali-silica-reaction in concrete , 2009 .

[57]  Gianluca Cusatis,et al.  Two-scale Study of Concrete Fracturing Behavior , 2007 .

[58]  Mohsen Ben Haha Mechanical effects of alkali silica reaction in concrete studied by SEM-image analysis , 2006 .

[59]  Catherine Larive,et al.  Apports combinés de l'expérimentation et de la modélisation à la compréhension de l'Alcali-réaction et de ses effets mécaniques , 1998 .

[60]  R. Dron,et al.  Thermodynamic and kinetic approach to the alkali-silica reaction. Part 2: Experiment , 1993 .