Scalable quantum tomography with fidelity estimation

We propose a quantum tomography scheme for pure qudit systems which adopts a certain version of random basis measurements and a generative learning method, along with a built-in fidelity estimation approach to assess the reliability of the tomographic states. We prove the validity of the scheme theoretically, and we perform numerically simulated experiments on several target states that have compact matrix product state representation, demonstrating its efficiency and robustness. We find the number of replicas required by a fixed fidelity criterion grows only linearly as the system size scales up, which saturates a lower bound from information theory. Thus the scheme achieves the highest possible scalability that is crucial for practical quantum state tomography.

[1]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[2]  C. Caves,et al.  Minimal Informationally Complete Measurements for Pure States , 2004, quant-ph/0404137.

[3]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[4]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[5]  Simone Severini,et al.  Experimental learning of quantum states , 2019, Quantum Information and Measurement (QIM) V: Quantum Technologies.

[6]  J Eisert,et al.  Towards experimental quantum-field tomography with ultracold atoms , 2014, Nature Communications.

[7]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[8]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[9]  Imre Csiszár,et al.  Information Theory: Basic notation and conventions , 2011 .

[10]  Tillmann Baumgratz,et al.  A scalable maximum likelihood method for quantum state tomography , 2013, 1308.2395.

[11]  Jun Wang,et al.  Unsupervised Generative Modeling Using Matrix Product States , 2017, Physical Review X.

[12]  R. Gill,et al.  State estimation for large ensembles , 1999, quant-ph/9902063.

[13]  Robert L. Kosut,et al.  Informationally complete measurements from compressed sensing methodology , 2015, ArXiv.

[14]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[15]  K. Loparo,et al.  Inequalities for the trace of matrix product , 1994, IEEE Trans. Autom. Control..

[16]  Sylvain Schwartz,et al.  Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator , 2018, Nature.

[17]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.

[18]  I. Deutsch,et al.  Strictly-complete measurements for bounded-rank quantum-state tomography , 2016, 1605.02109.

[19]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[20]  David Poulin,et al.  Practical characterization of quantum devices without tomography. , 2011, Physical review letters.

[21]  N. Houlsby,et al.  Adaptive Bayesian quantum tomography , 2011, 1107.0895.

[22]  P. Oscar Boykin,et al.  A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.

[23]  Yuanlong Wang,et al.  Adaptive quantum state tomography via linear regression estimation: Theory and two-qubit experiment , 2017 .

[24]  P. Alam ‘W’ , 2021, Composites Engineering.

[25]  H. Fan,et al.  Emulating Many-Body Localization with a Superconducting Quantum Processor. , 2017, Physical review letters.

[26]  D. Dong,et al.  Recursively Adaptive Quantum State Tomography: Theory and Two-qubit Experiment , 2015, 1512.01634.

[27]  Simone Severini,et al.  Learning hard quantum distributions with variational autoencoders , 2017, npj Quantum Information.

[28]  A. Delgado,et al.  Adaptive quantum tomography in high dimensions , 2018, Physical Review A.

[29]  C. F. Roos,et al.  Efficient tomography of a quantum many-body system , 2016, Nature Physics.

[30]  T. Monz,et al.  Realization of a scalable Shor algorithm , 2015, Science.

[31]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[32]  Jian-Wei Pan,et al.  Toolbox for entanglement detection and fidelity estimation , 2007, 0706.2432.

[33]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[34]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[35]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.

[36]  Aephraim M. Steinberg,et al.  Improving quantum state estimation with mutually unbiased bases. , 2008, Physical review letters.

[37]  Christopher A. Fuchs,et al.  Symmetric Informationally-Complete Quantum States as Analogues to Orthonormal Bases and Minimum-Uncertainty States , 2007, Entropy.

[38]  S. Flammia,et al.  Practical adaptive quantum tomography , 2016, 1605.05039.

[39]  Scott Aaronson,et al.  The learnability of quantum states , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Anastasios Kyrillidis,et al.  Provable compressed sensing quantum state tomography via non-convex methods , 2018, npj Quantum Information.

[41]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[42]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[43]  Five Measurement Bases Determine Pure Quantum States on Any Dimension. , 2014, Physical review letters.

[44]  T. Heinosaari,et al.  Quantum Tomography under Prior Information , 2011, 1109.5478.

[45]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[46]  Paul Busch,et al.  Informationally complete sets of physical quantities , 1991 .

[47]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[48]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[49]  Information Theory: Name index , 2011 .

[50]  Christopher Ferrie,et al.  Self-guided quantum tomography. , 2014, Physical review letters.

[51]  D. Poulin,et al.  Practical learning method for multi-scale entangled states , 2012, 1204.0792.

[52]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[53]  J. Finkelstein Pure-state informationally complete and "really" complete measurements (3 pages) , 2004 .

[54]  Claudio Carmeli,et al.  How many orthonormal bases are needed to distinguish all pure quantum states? , 2015 .

[55]  C. Schwemmer,et al.  Permutationally invariant quantum tomography. , 2010, Physical review letters.

[56]  Steven T. Flammia On SIC-POVMs in prime dimensions , 2006 .

[57]  Xiaodi Wu,et al.  Sample-Optimal Tomography of Quantum States , 2015, IEEE Transactions on Information Theory.

[58]  W. Marsden I and J , 2012 .

[59]  J. Eisert,et al.  Quantum field tomography , 2014, 1406.3631.

[60]  Amir Kalev,et al.  The power of being positive: Robust state estimation made possible by quantum mechanics , 2015 .

[61]  Claudio Carmeli,et al.  Stable pure state quantum tomography from five orthonormal bases , 2016, 1604.02970.

[62]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[63]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[64]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[65]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[66]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[67]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[68]  D Ahn,et al.  Adaptive Compressive Tomography with No a priori Information. , 2018, Physical review letters.