Quasi-Töplitz Functions in KAM Theorem

We define and describe the class of Quasi-T\"oplitz functions. We then prove an abstract KAM theorem where the perturbation is in this class. We apply this theorem to a Non-Linear-Scr\"odinger equation on the torus $T^d$, thus proving existence and stability of quasi-periodic solutions and recovering the results of [10]. With respect to that paper we consider only the NLS which preserves the total Momentum and exploit this conserved quantity in order to simplify our treatment.

[1]  Jurgen Poschel Quasi-periodic solutions for a nonlinear wave equation , 2007 .

[2]  Xiaoping Yuan,et al.  Quasi-periodic solutions of completely resonant nonlinear wave equations ✩ , 2006 .

[3]  Jean Bourgain,et al.  Green's Function Estimates for Lattice Schrödinger Operators and Applications. , 2004 .

[4]  S. B. Kuksin,et al.  KAM for the Non-Linear Schr\"odinger Equation , 2007, 0709.2393.

[5]  J. Meza Newton's method , 2011 .

[6]  Tosio Kato Perturbation theory for linear operators , 1966 .

[7]  Sergej B. Kuksin,et al.  Nearly Integrable Infinite-Dimensional Hamiltonian Systems , 1993 .

[8]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[9]  J. You,et al.  An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation , 2011 .

[10]  Jean Bourgain,et al.  On nonlinear Schrödinger equations , 1998 .

[11]  C. Eugene Wayne,et al.  Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory , 1990 .

[12]  Luigi Chierchia,et al.  KAM Tori for 1D Nonlinear Wave Equations¶with Periodic Boundary Conditions , 1999, chao-dyn/9904036.

[13]  J. Pöschel,et al.  A KAM-theorem for some nonlinear partial differential equations , 1996 .

[14]  J. Pöschel,et al.  Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation , 1996 .

[15]  L. Biasco,et al.  Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs , 2011 .

[16]  Jean Bourgain,et al.  QUASI-PERIODIC SOLUTIONS OF HAMILTONIAN PERTURBATIONS OF 2D LINEAR SCHRODINGER EQUATIONS , 1998 .

[17]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[18]  Cantor families of periodic solutions for completely resonant nonlinear wave equations , 2004, math/0410618.

[19]  T. Kappeler,et al.  A KAM theorem for the defocusing NLS equation , 2012 .

[20]  Walter Craig,et al.  Newton's method and periodic solutions of nonlinear wave equations , 1993 .

[21]  Dario Bambusi,et al.  On long time stability in Hamiltonian perturbations of non-resonant linear PDEs , 1999 .

[22]  YeYaojun GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .

[23]  Luca Biasco,et al.  KAM theory for the Hamiltonian derivative wave equation , 2011, 1111.3905.

[24]  Sergei Kuksin,et al.  Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum , 1987 .

[25]  J. Geng,et al.  Almost Periodic Solutions of One Dimensional Schrödinger Equation with the External Parameters , 2013 .

[26]  Jiangong You,et al.  A KAM Theorem for Hamiltonian Partial Differential Equations in Higher Dimensional Spaces , 2006 .

[27]  Jiirgen,et al.  On Elliptic Lower Dimensional Tori in Hamiltonian Systems , 2005 .

[28]  J. You,et al.  A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions , 2005 .