Endocardial versus epicardial electrical synchrony during LV free-wall pacing.

Cardiac resynchronization therapy has been most typically achieved by biventricular stimulation. However, left ventricular (LV) free-wall pacing appears equally effective in acute and chronic clinical studies. Recent data suggest electrical synchrony measured epicardially is not required to yield effective mechanical synchronization, whereas endocardial mapping data suggest synchrony (fusion with intrinsic conduction) is important. To better understand this disparity, we simultaneously mapped both endocardial and epicardial electrical activation during LV free-wall pacing at varying atrioventricular delays (AV delay 0-150 ms) in six normal dogs with the use of a 64-electrode LV endocardial basket and a 128-electrode epicardial sock. The transition from dyssynchronous LV-paced activation to synchronous RA-paced activation was studied by constructing activation time maps for both endo- and epicardial surfaces as a function of increasing AV delay. The AV delay at the transition from dyssynchronous to synchronous activation was defined as the transition delay (AVt). AVt was variable among experiments, in the range of 44-93 ms on the epicardium and 47-105 ms on the endocardium. Differences in endo- and epicardial AVt were smaller (-17 to +12 ms) and not significant on average (-5.0 +/- 5.2 ms). In no instance was the transition to synchrony complete on one surface without substantial concurrent transition on the other surface. We conclude that both epicardial and endocardial synchrony due to fusion of native with ventricular stimulation occur nearly concurrently. Assessment of electrical epicardial delay, as often used clinically during cardiac resynchronization therapy lead placement, should provide adequate assessment of stimulation delay for inner wall layers as well.

[1]  F W Prinzen,et al.  Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. , 1999, Journal of the American College of Cardiology.

[2]  M. Brand,et al.  Primary causes of decreased mitochondrial oxygen consumption during metabolic depression in snail cells. , 2002, American journal of physiology. Regulatory, integrative and comparative physiology.

[3]  H. Halperin,et al.  Systolic Improvement and Mechanical Resynchronization Does Not Require Electrical Synchrony in the Dilated Failing Heart With Left Bundle-Branch Block , 2002, Circulation.

[4]  K. Sagawa,et al.  Influence of pacing site on canine left ventricular contraction. , 1986, The American journal of physiology.

[5]  C. H. Chen,et al.  Improved left ventricular mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. , 1999, Circulation.

[6]  Andrew P. Kramer,et al.  Predictors of systolic augmentation from left ventricular preexcitation in patients with dilated cardiomyopathy and intraventricular conduction delay. , 2000, Circulation.

[7]  E. McVeigh,et al.  Novel Technique for Cardiac Electromechanical Mapping with Magnetic Resonance Imaging Tagging and an Epicardial Electrode Sock , 2003, Annals of Biomedical Engineering.

[8]  J. Blanc,et al.  Evaluation of different ventricular pacing sites in patients with severe heart failure: results of an acute hemodynamic study. , 1997, Circulation.

[9]  R. O'rourke,et al.  Effect of alteration of left ventricular activation sequence on the left ventricular end-systolic pressure-volume relation in closed-chest dogs. , 1985, Circulation research.

[10]  J. Blanc,et al.  Long-term left ventricular pacing: assessment and comparison with biventricular pacing in patients with severe congestive heart failure. , 2001, Journal of the American College of Cardiology.

[11]  E. McVeigh,et al.  Effects of single- and biventricular pacing on temporal and spatial dynamics of ventricular contraction. , 2002, American journal of physiology. Heart and circulatory physiology.

[12]  J. Blanc,et al.  Evaluation of left ventricular based pacing in patients with congestive heart failure and atrial fibrillation. , 1999, The American journal of cardiology.

[13]  Thomas Lavergne,et al.  Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay , 2001 .

[14]  Eugene N. Bruce,et al.  Biomedical Signal Processing and Signal Modeling , 2000 .

[15]  D. Kass,et al.  Mechanical dyssynchrony in dilated cardiomyopathy with intraventricular conduction delay as depicted by 3D tagged magnetic resonance imaging. , 2000, Circulation.

[16]  Andrew P. Kramer,et al.  Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. The Pacing Therapies for Congestive Heart Failure Study Group. The Guidant Congestive Heart Failure Research Group. , 1999, Circulation.

[17]  E. McVeigh,et al.  Mapping propagation of mechanical activation in the paced heart with MRI tagging. , 1999, The American journal of physiology.

[18]  F W Prinzen,et al.  Redistribution of myocardial fiber strain and blood flow by asynchronous activation. , 1990, The American journal of physiology.