A Lie-Group Formulation of Kinematics and Dynamics of Constrained MBS and Its Application to Analytical Mechanics
暂无分享,去创建一个
[2] Vorlesungen über analytische Geometrie des Raumes , 1950 .
[3] J. Stuelpnagel. On the Parametrization of the Three-Dimensional Rotation Group , 1964 .
[4] Pavel Winternitz,et al. Subgroups of the Euclidean group and symmetry breaking in nonrelativistic quantum mechanics , 1977 .
[5] K. H. Hunt,et al. Kinematic geometry of mechanisms , 1978 .
[6] K. Sugimoto,et al. Application of linear algebra to screw systems , 1982 .
[7] J. M. Hervé. Intrinsic formulation of problems of geometry and kinematics of mechanisms , 1982 .
[8] D. Sattinger,et al. Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics , 1986 .
[9] P. Maisser. Analytische Dynamik von Mehrkörpersystemen , 1988 .
[10] Arjan van der Schaft,et al. Non-linear dynamical control systems , 1990 .
[11] Russell H. Taylor,et al. On homogeneous transforms, quaternions, and computational efficiency , 1990, IEEE Trans. Robotics Autom..
[12] Leo Joskowicz,et al. Computational Kinematics , 1991, Artif. Intell..
[13] D. Chevallier,et al. Lie algebras, modules, dual quaternions and algebraic methods in kinematics , 1991 .
[14] Frank Chongwoo Park,et al. A geometrical formulation of the dynamical equations describing kinematic chains , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.
[15] J. Marsden,et al. The Reduced Euler-Lagrange Equations , 1993 .
[16] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[17] Clément Gosselin,et al. The agile eye: a high-performance three-degree-of-freedom camera-orienting device , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.
[18] Richard M. Murray,et al. A Mathematical Introduction to Robotic Manipulation , 1994 .
[19] Frank Chongwoo Park,et al. A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..
[20] O. Bauchau,et al. Numerical integration of non‐linear elastic multi‐body systems , 1995 .
[21] Richard M. Murray,et al. Geometric phases and robotic locomotion , 1995, J. Field Robotics.
[22] Joel W. Burdick,et al. Geometric Perspectives on the Mechanics and Control of Robotic Locomotion , 1996 .
[23] Janusz,et al. Geometrical Methods in Robotics , 1996, Monographs in Computer Science.
[24] D. Siminovitch. Rotations in NMR, part II: applications of the Euler-Rodrigues parameters , 1997 .
[25] Peter Maisser,et al. Differential-geometric methods in multibody dynamics , 1997 .
[26] J. Marsden,et al. Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction , 1997 .
[27] D. Siminovitch. Rotations in NMR: Part I. EulerRodrigues parameters and quaternions , 1997 .
[28] Linda R. Petzold,et al. Regularization of Higher-Index Differential-Algebraic Equations with Rank-Deficient Constraints , 1997, SIAM J. Sci. Comput..
[29] H. Struemper. Motion Control for Nonholonomic Systems on Matrix Lie Groups , 1998 .
[30] H. Munthe-Kaas. Runge-Kutta methods on Lie groups , 1998 .
[31] A. Ibrahimbegovic,et al. Finite rotations in dynamics of beams and implicit time-stepping schemes , 1998 .
[32] C. Barus. A treatise on the theory of screws , 1998 .
[33] K. Hao. Dual number method, rank of a screw system and generation of Lie sub-algebras , 1998 .
[34] F. Park,et al. Manipulability of Closed Kinematic Chains , 1998 .
[35] H. Munthe-Kaas. High order Runge-Kutta methods on manifolds , 1999 .
[36] McCarthy,et al. Geometric Design of Linkages , 2000 .
[37] Stefano Stramigioli,et al. Modeling and IPC Control of Interactive Mechanical Systems - A Coordinate-Free Approach , 2001 .
[38] A. Müller. Local Analysis of Singular Configurations of Open and Closed Loop Manipulators , 2002 .