A Lie-Group Formulation of Kinematics and Dynamics of Constrained MBS and Its Application to Analytical Mechanics

A Lie-group formulation for the kinematics and dynamics ofholonomic constrained mechanical systems (CMS) is presented. The kinematics ofrigid multibody systems (MBS) is described in terms of the screw system of theMBS. Using Lie-algebraic properties of screw algebra, isomorphicto se(3), allows a purely algebraic derivation of the Lagrangian motion equations. As such the Lie-group SE(3) ⊗... ⊗ SE(3) (n copies) is theambient space of a MBS consisting of n rigid bodies. Any parameterizationof the ambient space corresponds to a chart on the MBS configuration space ℝn. The key to combine differential geometric and Lie-algebraic approaches is the existence of kinematic basic functions whichare push forward maps from the tangent bundle Tℝn to the Lie-algebra of the ambient space.MBS with kinematic loops are CMS subject to holonomic constraints, holonomicCMS. Constraint equations are formulated on the ambient space based on achart on ℝn. Explicitly considering the Lie-algebraicstructure of se(3) as semidirect sum of the algebra oftranslations and rotations enables to reduce the number of holonomicconstraints for cut joints. It is shown that third order Lie-brackets are sufficient to obtain any subalgebra of se(3).Differential geometric aspects of the kinematics of MBS with open and closedkinematic chains are considered. The distribution in any configuration andthe subalgebra generated by the screw system of a mechanism is the key todetect singularities and to analyze the structure of the set of singularpoints.

[1]  Dr. Karl Kommerell, em. o. Prof. a. d. Universität Tübingen, Vorlesungen über analytische Geometrie des Raumes. VII + 388 S. m. 77 Fig. im Text u. auf 2 Tafeln. Leipzig 1940, K. F. Koehler Verlag. Preis geb. 20 M , 1940 .

[2]  Vorlesungen über analytische Geometrie des Raumes , 1950 .

[3]  J. Stuelpnagel On the Parametrization of the Three-Dimensional Rotation Group , 1964 .

[4]  Pavel Winternitz,et al.  Subgroups of the Euclidean group and symmetry breaking in nonrelativistic quantum mechanics , 1977 .

[5]  K. H. Hunt,et al.  Kinematic geometry of mechanisms , 1978 .

[6]  K. Sugimoto,et al.  Application of linear algebra to screw systems , 1982 .

[7]  J. M. Hervé Intrinsic formulation of problems of geometry and kinematics of mechanisms , 1982 .

[8]  D. Sattinger,et al.  Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics , 1986 .

[9]  P. Maisser Analytische Dynamik von Mehrkörpersystemen , 1988 .

[10]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[11]  Russell H. Taylor,et al.  On homogeneous transforms, quaternions, and computational efficiency , 1990, IEEE Trans. Robotics Autom..

[12]  Leo Joskowicz,et al.  Computational Kinematics , 1991, Artif. Intell..

[13]  D. Chevallier,et al.  Lie algebras, modules, dual quaternions and algebraic methods in kinematics , 1991 .

[14]  Frank Chongwoo Park,et al.  A geometrical formulation of the dynamical equations describing kinematic chains , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[15]  J. Marsden,et al.  The Reduced Euler-Lagrange Equations , 1993 .

[16]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[17]  Clément Gosselin,et al.  The agile eye: a high-performance three-degree-of-freedom camera-orienting device , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[18]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[19]  Frank Chongwoo Park,et al.  A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..

[20]  O. Bauchau,et al.  Numerical integration of non‐linear elastic multi‐body systems , 1995 .

[21]  Richard M. Murray,et al.  Geometric phases and robotic locomotion , 1995, J. Field Robotics.

[22]  Joel W. Burdick,et al.  Geometric Perspectives on the Mechanics and Control of Robotic Locomotion , 1996 .

[23]  Janusz,et al.  Geometrical Methods in Robotics , 1996, Monographs in Computer Science.

[24]  D. Siminovitch Rotations in NMR, part II: applications of the Euler-Rodrigues parameters , 1997 .

[25]  Peter Maisser,et al.  Differential-geometric methods in multibody dynamics , 1997 .

[26]  J. Marsden,et al.  Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction , 1997 .

[27]  D. Siminovitch Rotations in NMR: Part I. EulerRodrigues parameters and quaternions , 1997 .

[28]  Linda R. Petzold,et al.  Regularization of Higher-Index Differential-Algebraic Equations with Rank-Deficient Constraints , 1997, SIAM J. Sci. Comput..

[29]  H. Struemper Motion Control for Nonholonomic Systems on Matrix Lie Groups , 1998 .

[30]  H. Munthe-Kaas Runge-Kutta methods on Lie groups , 1998 .

[31]  A. Ibrahimbegovic,et al.  Finite rotations in dynamics of beams and implicit time-stepping schemes , 1998 .

[32]  C. Barus A treatise on the theory of screws , 1998 .

[33]  K. Hao Dual number method, rank of a screw system and generation of Lie sub-algebras , 1998 .

[34]  F. Park,et al.  Manipulability of Closed Kinematic Chains , 1998 .

[35]  H. Munthe-Kaas High order Runge-Kutta methods on manifolds , 1999 .

[36]  McCarthy,et al.  Geometric Design of Linkages , 2000 .

[37]  Stefano Stramigioli,et al.  Modeling and IPC Control of Interactive Mechanical Systems - A Coordinate-Free Approach , 2001 .

[38]  A. Müller Local Analysis of Singular Configurations of Open and Closed Loop Manipulators , 2002 .