Controlling correlated processes of Poisson counts

The class of INARMA models is well suited to model the autocorrelation structure of processes with Poisson marginals arising in context of statistical quality control. After reviewing briefly the basic principles and important members of this broad family of models, we concentrate on the INAR(1) model, which is of particular relevance for quality control. We suggest four approaches to control such count processes, and compare their run length performance in a simulation study. Results show that only some of the out-of-control situations considered can be controlled effectively with the discussed control schemes. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[2]  James M. Lucas,et al.  Counted Data CUSUM's , 1985 .

[3]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[4]  Roger M. Sauter,et al.  Introduction to Statistical Quality Control (2nd ed.) , 1992 .

[5]  A. Alzaid,et al.  Some autoregressive moving average processes with generalized Poisson marginal distributions , 1993 .

[6]  Kurt Brännäs,et al.  Estimation in integer‐valued moving average models , 2001 .

[7]  Mohamed Alosh,et al.  First order autoregressive time series with negative binomial and geometric marginals , 1992 .

[8]  Mohamed Alosh,et al.  An integer-valued pth-order autoregressive structure (INAR(p)) process , 1990, Journal of Applied Probability.

[9]  Mohamed Alosh,et al.  First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties , 1988 .

[10]  A. Alzaid,et al.  First-Order Integer-Valued Autoregressive Process : Distributional and Regression Properties , 2008 .

[11]  Li Yuan,et al.  THE INTEGER‐VALUED AUTOREGRESSIVE (INAR(p)) MODEL , 1991 .

[12]  Connie M. Borror,et al.  Poisson EWMA Control Charts , 1998 .

[13]  Lloyd S. Nelson,et al.  Column: Technical Aids: The Shewhart Control Chart--Tests for Special Causes , 1984 .

[14]  Harry Joe,et al.  A New Type of Discrete Self-Decomposability and Its Application to Continuous-Time Markov Processes for Modeling Count Data Time Series , 2003 .

[15]  Ed. McKenzie,et al.  SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .

[16]  Mohamed Alosh,et al.  Binomial autoregressive moving average models , 1991 .

[17]  Charles P. Quesenberry,et al.  SPC Q charts for a Poisson parameter (lambda): Short or long runs , 1991 .

[18]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[19]  William H. Woodall,et al.  Control Charts Based on Attribute Data: Bibliography and Review , 1997 .

[20]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[21]  E. McKenzie,et al.  Autoregressive moving-average processes with negative-binomial and geometric marginal distributions , 1986, Advances in Applied Probability.

[22]  Sven Knoth,et al.  Control Charts for Time Series: A Review , 2004 .

[23]  Kurt Brännäs,et al.  A New Approach to Modelling and Forecasting Monthly Guest Nights in Hotels , 2001 .