Why Confluence is More Powerful than Ample Sets in Probabilistic and Non-Probabilistic Branching Time
暂无分享,去创建一个
[1] Doron A. Peled,et al. Defining Conditional Independence Using Collapses , 1992, Theor. Comput. Sci..
[2] Antti Valmari,et al. Stubborn sets for reduced state space generation , 1991, Applications and Theory of Petri Nets.
[3] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[4] A. Valmari,et al. Stubborn Sets for Reduced State Space Generation, Proc. 11th Internat. Conf. on Application and Theory of Petri Nets , 1990 .
[5] Mariëlle Stoelinga,et al. Alea jacta est : verification of probabilistic, real-time and parametric systems , 2002 .
[6] Victoria Allen,et al. All for one. , 2013, Journal of obstetrics and gynaecology Canada : JOGC = Journal d'obstetrique et gynecologie du Canada : JOGC.
[7] Patrice Godefroid,et al. Refining Dependencies Improves Partial-Order Verification Methods (Extended Abstract) , 1993, CAV.
[8] C. Baier,et al. Partial order reduction for probabilistic systems , 2004 .
[9] Doron A. Peled,et al. All from One, One for All: on Model Checking Using Representatives , 1993, CAV.
[10] Pierre Wolper,et al. Partial-order methods for model checking: from linear time to branching time , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
[11] Jaco van de Pol,et al. Confluence Reduction for Probabilistic Systems , 2011, TACAS.
[12] Holger Hermanns,et al. Partial Order Methods for Statistical Model Checking and Simulation , 2011, FMOODS/FORTE.
[13] Pedro R. D'Argenio,et al. Partial order reduction on concurrent probabilistic programs , 2004, First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings..
[14] Patrice Godefroid,et al. Partial-Order Methods for the Verification of Concurrent Systems , 1996, Lecture Notes in Computer Science.
[15] Hongyang Qu,et al. Partial Order Reduction for Model Checking Markov Decision Processes under Unconditional Fairness , 2011, 2011 Eighth International Conference on Quantitative Evaluation of SysTems.
[16] Kim G. Larsen,et al. Reduction and Refinement Strategies for Probabilistic Analysis , 2002, PAPM-PROBMIV.
[17] Antti Valmari,et al. Stubborn set methods for process algebras , 1997, Partial Order Methods in Verification.
[18] Roberto Segala,et al. Modeling and verification of randomized distributed real-time systems , 1996 .
[19] Christel Baier,et al. Partial Order Reduction for Probabilistic Branching Time , 2006, QAPL.
[20] Christel Baier,et al. Quantitative Analysis under Fairness Constraints , 2009, ATVA.
[21] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[22] S. C.C. Blom. Partial $\tau$-confluence for efficient state space generation , 2001 .
[23] Doron A. Peled,et al. Ten Years of Partial Order Reduction , 1998, CAV.
[24] Pedro R. D'Argenio,et al. Partial Order Reduction for Probabilistic Systems: A Revision for Distributed Schedulers , 2009, CONCUR.
[25] Jaco van de Pol,et al. State Space Reduction by Proving Confluence , 2002, CAV.
[26] Wojciech Penczek,et al. A partial order approach to branching time logic model checking , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.
[27] Christel Baier,et al. Principles of model checking , 2008 .
[28] Jaco van de Pol,et al. Confluence Reduction for Probabilistic Systems (extended version) , 2010, ArXiv.
[29] Marcus Größer,et al. Reduction methods for probabilistic model checking , 2008 .
[30] Radu Mateescu,et al. Partial Order Reductions Using Compositional Confluence Detection , 2009, FM.
[31] Sami Evangelista,et al. Solving the ignoring problem for partial order reduction , 2010, International Journal on Software Tools for Technology Transfer.