Automatic object and image alignment using Fourier Descriptors

This paper presents a new edge-based technique for image alignment, combining Fourier Descriptors (FD) and the Iterative Closest Point (ICP) computation into an accurate and robust processing pipeline. Once edges are identified in the reference and target images, Fourier Descriptors are used to simultaneously determine edge correspondence and estimate the transformation parameters. Subsequently, an ICP computation is applied to further improve the alignment results. Using Fourier Descriptors in combination with a reliable distance matrix, corresponding edge pairs can be reliably detected for all identified edges.

[1]  Andrew W. Fitzgibbon,et al.  Robust Registration of 2D and 3D Point Sets , 2003, BMVC.

[2]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Ralph Roskies,et al.  Fourier Descriptors for Plane Closed Curves , 1972, IEEE Transactions on Computers.

[4]  Hanan Samet,et al.  Content-based image retrieval using Fourier descriptors on a logo database , 2002, Object recognition supported by user interaction for service robots.

[5]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[6]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[8]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[9]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[10]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[11]  Karl Rohr Landmark-Based Image Analysis: Using Geometric And Intensity Models , 2010 .

[12]  Satyabroto Sinha,et al.  Invariance of stereo images via the theory of complex moments , 1997, Pattern Recognit..

[13]  Roman Goldenberg,et al.  Fast Geodesic Active Contours , 1999, Scale-Space.

[14]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[15]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  B. S. Manjunath,et al.  A contour-based approach to multisensor image registration , 1995, IEEE Trans. Image Process..

[17]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[19]  B Likar,et al.  Automatic extraction of corresponding points for the registration of medical images. , 1999, Medical physics.

[20]  Rama Chellappa,et al.  Using geometric properties for correspondence-less image alignment , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[21]  Ardeshir Goshtasby,et al.  A Region-Based Approach to Digital Image Registration with Subpixel Accuracy , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[23]  Paul F. Whelan,et al.  Computational approach for edge linking , 2002, J. Electronic Imaging.