Ultrasensitive immunosensor for prostate specific antigen using biomimetic polydopamine nanospheres as an electrochemiluminescence superquencher and antibody carriers.

[1]  Dan Wu,et al.  Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb (II) metal-organic framework. , 2016, Biosensors & bioelectronics.

[2]  Danke Xu,et al.  Aptamer/Polydopamine Nanospheres Nanocomplex for in Situ Molecular Sensing in Living Cells. , 2015, Analytical chemistry.

[3]  W. Miao,et al.  Electrogenerated Chemiluminescence (ECL) Quenching of the Ru(bpy)32+/TPrA System by the Explosive TNT , 2015 .

[4]  Hongyuan Chen,et al.  A novel electrochemiluminescence resonance energy transfer system for ultrasensitive detection of prostate-specific antigen , 2015 .

[5]  D. Tang,et al.  Target catalyzed hairpin assembly for constructing a ratiometric electrochemical aptasensor. , 2015, Biosensors & bioelectronics.

[6]  Danke Xu,et al.  A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification. , 2015, Biosensors & bioelectronics.

[7]  Fushen Lu,et al.  Quenching of the electrochemiluminescence of RU-complex tagged shared-stem hairpin probes by graphene oxide and its application to quantitative turn-on detection of DNA. , 2015, Biosensors & bioelectronics.

[8]  Wenhua Gao,et al.  An electrochemiluminescence aptasensing platform based on ferrocene-graphene nanosheets for simple and rapid detection of thrombin , 2015 .

[9]  C. Yang,et al.  Highly sensitive and selective detection of miRNA: DNase I-assisted target recycling using DNA probes protected by polydopamine nanospheres. , 2015, Chemical communications.

[10]  Y. Chai,et al.  Highly efficient electrogenerated chemiluminescence quenching of PEI enhanced Ru(bpy)₃²⁺ nanocomposite by hemin and Au@CeO₂ nanoparticles. , 2015, Biosensors & bioelectronics.

[11]  Zhiyong Huang,et al.  A novel electrochemiluminescence tetracyclines sensor based on a Ru(bpy)₃²⁺-doped silica nanoparticles/Nafion film modified electrode. , 2014, Talanta.

[12]  Y. Mechref,et al.  Glycoproteomics: Identifying the Glycosylation of Prostate Specific Antigen at Normal and High Isoelectric Points by LC–MS/MS , 2014, Journal of proteome research.

[13]  Danke Xu,et al.  Bioinspired polydopamine nanospheres: a superquencher for fluorescence sensing of biomolecules , 2014 .

[14]  Zhaoxia Jin,et al.  Characterization of carbonized polydopamine nanoparticles suggests ordered supramolecular structure of polydopamine. , 2014, Langmuir.

[15]  Hongyuan Chen,et al.  RuSi@Ru(bpy)3(2+)/Au@Ag2S nanoparticles electrochemiluminescence resonance energy transfer system for sensitive DNA detection. , 2014, Analytical chemistry.

[16]  Fei Zhang,et al.  Ultrasensitive immunoassay for free prostate-specific antigen based on ferrocenecarboxylate enhanced cathodic electrochemiluminescence of peroxydisulfate , 2014, Microchimica Acta.

[17]  Huang-Hao Yang,et al.  Multifunctional Fe₃O₄@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. , 2014, ACS nano.

[18]  Q. Gao,et al.  Electrogenerated chemiluminescence peptide-based biosensor for the determination of prostate-specific antigen based on target-induced cleavage of peptide. , 2014, Analytical chemistry.

[19]  M. Meneghetti,et al.  A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods. , 2013, Biosensors & bioelectronics.

[20]  Xiaoquan Lu,et al.  Electrochemiluminescence quenching of tris(2,2′-bipyridyl)ruthenium , 2013 .

[21]  Radosław Mrówczyński,et al.  Structure of polydopamine: a never-ending story? , 2013, Langmuir : the ACS journal of surfaces and colloids.

[22]  Bhanu Pratap Singh,et al.  Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes , 2013 .

[23]  Jun‐Jie Zhu,et al.  Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods , 2013, Scientific Reports.

[24]  Pooi See Lee,et al.  Polydopamine spheres as active templates for convenient synthesis of various nanostructures. , 2013, Small.

[25]  In Taek Song,et al.  Non‐Covalent Self‐Assembly and Covalent Polymerization Co‐Contribute to Polydopamine Formation , 2012 .

[26]  N. Lumen,et al.  Glycosylation of prostate specific antigen and its potential diagnostic applications. , 2012, Clinica chimica acta; international journal of clinical chemistry.

[27]  B. Freeman,et al.  Elucidating the structure of poly(dopamine). , 2012, Langmuir : the ACS journal of surfaces and colloids.

[28]  J. Qiu,et al.  Preparation of amine-modified multiwalled carbon nanotubes and their use in composites , 2011 .

[29]  Minghui Yang,et al.  Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. , 2011, Biosensors & bioelectronics.

[30]  Guonan Chen,et al.  A sensitive aptasensor for adenosine based on the quenching of Ru(bpy)(3)(2+)-doped silica nanoparticle ECL by ferrocene. , 2010, Chemical communications.

[31]  Yaqing Liu,et al.  Multiwalled Carbon-Nanotube-Embedded Microcapsules and Their Electrochemical Behavior , 2009 .

[32]  Paul Meredith,et al.  The physical and chemical properties of eumelanin. , 2006, Pigment cell research.

[33]  Guonan Chen,et al.  Determination of carbamates in nature water based on the enhancement of electrochemiluminescent of Ru(bpy)(3)(2+) at the multi-wall carbon nanotube-modified electrode. , 2006, Talanta.

[34]  J. Landers,et al.  Quenching of the electrochemiluminescence of tris(2,2'-bipyridine)ruthenium(II) by ferrocene and its potential application to quantitative DNA detection. , 2006, Journal of the American Chemical Society.

[35]  Shaojun Dong,et al.  Electrogenerated chemiluminescence from R(bpy)3(2+) ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films. , 2004, Analytical chemistry.

[36]  M. Richter,et al.  Quenching of electrogenerated chemiluminescence by phenols, hydroquinones, catechols, and benzoquinones. , 1999, Analytical chemistry.

[37]  Michael R. Wasielewski,et al.  Photoinduced electron transfer in supramolecular systems for artificial photosynthesis , 1992 .