Data and model uncertainty estimation for linear inversion: Geophys

SUMMARY Inverse theory concerns the problem of making inferences about physical systems from indirect noisy measurements. Information about the errors in the observations is essential to solve any inverse problem, otherwise it is impossible to say when a feature ‘fits the data’. In practice, however, one seldom has a direct estimate of the data errors. We exploit the trade-off between data prediction and model or data structure to determine both model-independent and modelbased estimates of the noise characteristics from a single realization of the data. Noise estimates are then used to characterize the set of reasonable models that fit the data, for example, by intersecting prior model parameter constraints with the set of data fitting models. This prior information can also be used to set bounds on the bias. We illustrate our methods with synthetic examples of vertical seismic profiling and cross-well tomography.

[1]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[2]  P. Stark Inference in infinite-dimensional inverse problems: Discretization and duality , 1992 .

[3]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[4]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[5]  J. Scales,et al.  Local Bayesian inversion: theoretical developments , 2000 .

[6]  J. Scales Tomographic inversion via the conjugate gradient method , 1987 .

[7]  S. Treitel,et al.  Fast l p solution of large, sparse, linear systems: application to seismic travel time tomography , 1988 .

[8]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[9]  Philip B. Stark,et al.  Minimax confidence intervals in geomagnetism , 1992 .

[10]  F. O’Sullivan A Statistical Perspective on Ill-posed Inverse Problems , 1986 .

[11]  3-D Inversion of DC Resistivity Data Using an L-curve Criterion , 1999 .

[12]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[13]  Douglas Nychka,et al.  Confidence Intervals for Nonparametric Curve Estimates , 2001 .

[14]  Paul Docherty,et al.  Solving for the thickness and velocity of the weathering layer using 2-D refraction tomography , 1992 .

[15]  D. Oldenburg,et al.  Inversion of geophysical data over a copper gold porphyry deposit; a case history for Mt. Milligan , 1997 .

[16]  P. Stark Inverse problems as statistics , 2002 .

[17]  Roel Snieder,et al.  What is noise , 1998 .

[18]  Luis Tenorio,et al.  Prior information and uncertainty in inverse problems , 2001 .

[19]  Luis Tenorio,et al.  Statistical Regularization of Inverse Problems , 2001, SIAM Rev..

[20]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[21]  G. Milliken Nonlinear Regression Analysis and Its Applications , 1990 .

[22]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[23]  Peiliang Xu Truncated SVD methods for discrete linear ill-posed problems , 1998 .

[24]  J. Scales,et al.  Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis , 1998 .

[25]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .