Access of Antibody Molecules to the Conserved Coreceptor Binding Site on Glycoprotein gp120 Is Sterically Restricted on Primary Human Immunodeficiency Virus Type 1

ABSTRACT Anti-human immunodeficiency virus type 1 (HIV-1) antibodies whose binding to gp120 is enhanced by CD4 binding (CD4i antibodies) are generally considered nonneutralizing for primary HIV-1 isolates. However, a novel CD4i-specific Fab fragment, X5, has recently been found to neutralize a wide range of primary isolates. To investigate the precise nature of the extraordinary neutralizing ability of Fab X5, we evaluated the abilities of different forms (immunoglobulin G [IgG], Fab, and single-chain Fv) of X5 and other CD4i monoclonal antibodies to neutralize a range of primary HIV-1 isolates. Our results show that, for a number of isolates, the size of the neutralizing agent is inversely correlated with its ability to neutralize. Thus, the poor ability of CD4i-specific antibodies to neutralize primary isolates is due, at least in part, to steric factors that limit antibody access to the gp120 epitopes. Studies of temperature-regulated neutralization or fusion-arrested intermediates suggest that the steric effects are important in limiting the binding of IgG to the viral envelope glycoproteins after HIV-1 has engaged CD4 on the target cell membrane. The results identify hurdles in using CD4i epitopes as targets for antibody-mediated neutralization in vaccine design but also indicate that the CD4i regions could be efficiently targeted by small molecule entry inhibitors.

[1]  Ying Sun,et al.  A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. , 1998, Science.

[2]  C. Broder,et al.  UvA-DARE ( Digital Academic Repository ) Neutralizing antibodies to the HIV-1 envelope glycoproteins , 2009 .

[3]  R. Connor,et al.  Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. , 1995, Virology.

[4]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[5]  Ying Sun,et al.  Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immunodeficiency virus type 1 isolates , 1995, Journal of virology.

[6]  Q. Sattentau,et al.  Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding , 1991, The Journal of experimental medicine.

[7]  H. Schuitemaker,et al.  Monocytotropic human immunodeficiency virus type 1 (HIV-1) variants detectable in all stages of HIV-1 infection lack T-cell line tropism and syncytium-inducing ability in primary T-cell culture , 1991, Journal of virology.

[8]  S. Günther,et al.  Temperature dependence of cell-cell fusion induced by the envelope glycoprotein of human immunodeficiency virus type 1 , 1995, Journal of virology.

[9]  C. Barbas,et al.  Determinants of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Activation by Soluble CD4 and Monoclonal Antibodies , 1998, Journal of Virology.

[10]  Carlos F. Barbas,et al.  Phage display: a Laboratory manual , 2014 .

[11]  Q. Sattentau,et al.  Neutralization of Human Immunodeficiency Virus Type 1 by Antibody to gp120 Is Determined Primarily by Occupancy of Sites on the Virion Irrespective of Epitope Specificity , 1998, Journal of Virology.

[12]  J. Sodroski,et al.  Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody , 1998, Nature.

[13]  D. Dimitrov Fusin – a place for HIV–1 and T4 cells to meet , 1996, Nature Medicine.

[14]  G. Lewis,et al.  Antigenic Properties of the Human Immunodeficiency Virus Envelope during Cell-Cell Fusion , 2001, Journal of Virology.

[15]  J. Sodroski,et al.  Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding , 1995, Journal of virology.

[16]  D R Burton,et al.  Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. , 1994, Science.

[17]  J. Kappes,et al.  Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and -defective viral genomes , 1991, Journal of virology.

[18]  H R Hoogenboom,et al.  Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. , 1991, Nucleic acids research.

[19]  R. Blumenthal,et al.  Conformational Changes in Cell Surface HIV-1 Envelope Glycoproteins Are Triggered by Cooperation between Cell Surface CD4 and Co-receptors* , 1998, The Journal of Biological Chemistry.

[20]  J. Sodroski,et al.  Oligomeric Modeling and Electrostatic Analysis of the gp120 Envelope Glycoprotein of Human Immunodeficiency Virus , 2000, Journal of Virology.

[21]  D. Littman,et al.  Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range , 1991, Journal of virology.

[22]  B. Chesebro,et al.  Effects of CCR5 and CD4 Cell Surface Concentrations on Infections by Macrophagetropic Isolates of Human Immunodeficiency Virus Type 1 , 1998, Journal of Virology.

[23]  M. Reitz,et al.  Expression and Characterization of a Single-Chain Polypeptide Analogue of the Human Immunodeficiency Virus Type 1 gp120-CD4 Receptor Complex , 2000, Journal of Virology.

[24]  D. Ho,et al.  Genotypic and phenotypic characterization of HIV-1 patients with primary infection. , 1993, Science.

[25]  J. Binley,et al.  Variable-Loop-Deleted Variants of the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Can Be Stabilized by an Intermolecular Disulfide Bond between the gp120 and gp41 Subunits , 2000, Journal of Virology.

[26]  J. Binley,et al.  A Recombinant Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Complex Stabilized by an Intermolecular Disulfide Bond between the gp120 and gp41 Subunits Is an Antigenic Mimic of the Trimeric Virion-Associated Structure , 2000, Journal of Virology.

[27]  K. Schønning,et al.  Stoichiometry of Monoclonal Antibody Neutralization of T-Cell Line-Adapted Human Immunodeficiency Virus Type 1 , 1999, Journal of Virology.

[28]  J. Sodroski,et al.  The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. , 1998, Science.

[29]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[30]  J. Sodroski,et al.  Adaptation of a CCR5-Using, Primary Human Immunodeficiency Virus Type 1 Isolate for CD4-Independent Replication , 1999, Journal of Virology.

[31]  D R Burton,et al.  gp120: Biologic aspects of structural features. , 2001, Annual review of immunology.

[32]  Luc Montagnier,et al.  T-lymphocyte T4 molecule behaves as the receptor for human retrovirus  LAV , 1984, Nature.

[33]  Q. Sattentau,et al.  Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding , 1993, Journal of virology.

[34]  Dan R. Littman,et al.  Use of Coreceptors Other Than CCR5 by Non-Syncytium-Inducing Adult and Pediatric Isolates of Human Immunodeficiency Virus Type 1 Is Rare In Vitro , 1998, Journal of Virology.

[35]  William C. Olson,et al.  CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5 , 1996, Nature.

[36]  P. Bugelski,et al.  Physicochemical dissociation of CD4-mediated syncytium formation and shedding of human immunodeficiency virus type 1 gp120 , 1993, Journal of virology.

[37]  T L Hoffman,et al.  Stable exposure of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  W A Hendrickson,et al.  Energetics of the HIV gp120-CD4 binding reaction. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Sodroski,et al.  Highly Stable Trimers Formed by Human Immunodeficiency Virus Type 1 Envelope Glycoproteins Fused with the Trimeric Motif of T4 Bacteriophage Fibritin , 2002, Journal of Virology.

[40]  W A Hendrickson,et al.  Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. , 2000, Structure.

[41]  J. Culp,et al.  Envelope glycoproteins from biologically diverse isolates of immunodeficiency viruses have widely different affinities for CD4. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Binley,et al.  Redox-Triggered Infection by Disulfide-Shackled Human Immunodeficiency Virus Type 1 Pseudovirions , 2003, Journal of Virology.

[43]  L. Stamatatos,et al.  Differential regulation of cellular tropism and sensitivity to soluble CD4 neutralization by the envelope gp120 of human immunodeficiency virus type 1 , 1994, Journal of virology.

[44]  J. Sodroski,et al.  Fine definition of a conserved CCR5-binding region on the human immunodeficiency virus type 1 glycoprotein 120. , 2000, AIDS research and human retroviruses.

[45]  J. Sodroski,et al.  Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding , 1993, Journal of virology.

[46]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[47]  K. Salzwedel,et al.  Sequential CD4-Coreceptor Interactions in Human Immunodeficiency Virus Type 1 Env Function: Soluble CD4 Activates Env for Coreceptor-Dependent Fusion and Reveals Blocking Activities of Antibodies against Cryptic Conserved Epitopes on gp120 , 2000, Journal of Virology.

[48]  D. Burton,et al.  The antiviral activity of antibodies in vitro and in vivo , 2001, Advances in Immunology.

[49]  W. Hendrickson,et al.  Dimeric association and segmental variability in the structure of human CD4 , 1997, Nature.

[50]  L. Stamatatos,et al.  V2 Loop Glycosylation of the Human Immunodeficiency Virus Type 1 SF162 Envelope Facilitates Interaction of This Protein with CD4 and CCR5 Receptors and Protects the Virus from Neutralization by Anti-V3 Loop and Anti-CD4 Binding Site Antibodies , 2000, Journal of Virology.

[51]  A. Trkola,et al.  Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1 , 1996, Journal of virology.

[52]  D. Littman,et al.  Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity , 1990, Journal of virology.

[53]  H. Katinger,et al.  Neutralization Synergy of Human Immunodeficiency Virus Type 1 Primary Isolates by Cocktails of Broadly Neutralizing Antibodies , 2001, Journal of Virology.

[54]  Inhibition of Virus Attachment to CD4+ Target Cells Is a Major Mechanism of T Cell Line–adapted HIV-1 Neutralization , 1997, The Journal of experimental medicine.

[55]  J. Sodroski,et al.  Rapid complementation assays measuring replicative potential of human immunodeficiency virus type 1 envelope glycoprotein mutants , 1990, Journal of virology.

[56]  J. Sodroski,et al.  Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein , 1997, Journal of virology.

[57]  Peter D. Kwong,et al.  HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites , 2002, Nature.

[58]  M. Greaves,et al.  The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus , 1984, Nature.

[59]  J. Sodroski,et al.  Loss of a Single N-Linked Glycan Allows CD4-Independent Human Immunodeficiency Virus Type 1 Infection by Altering the Position of the gp120 V1/V2 Variable Loops , 2001, Journal of Virology.

[60]  Christos J. Petropoulos,et al.  A Novel Phenotypic Drug Susceptibility Assay for Human Immunodeficiency Virus Type 1 , 2000, Antimicrobial Agents and Chemotherapy.

[61]  Garrett M. Morris,et al.  Crystal Structure of a Neutralizing Human IgG Against HIV-1: A Template for Vaccine Design , 2001, Science.

[62]  Q. Sattentau,et al.  Probing the structure of the V2 domain of human immunodeficiency virus type 1 surface glycoprotein gp120 with a panel of eight monoclonal antibodies: human immune response to the V1 and V2 domains , 1993, Journal of virology.

[63]  J. Sodroski,et al.  Probability Analysis of Variational Crystallization and Its Application to gp120, The Exterior Envelope Glycoprotein of Type 1 Human Immunodeficiency Virus (HIV-1)* , 1999, The Journal of Biological Chemistry.

[64]  P. Schimmel,et al.  Conformational energy and configurational statistics of poly-L-proline. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Joseph Sodroski,et al.  CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5 , 1996, Nature.