Calculation of Attachment Energies and Relative Volume Growth Rates As an Aid to Polymorph Prediction

We calculate the morphologies of a number of the observed and hypothetical crystal structures of paracetamol, parabanic acid, and pyridine using the attachment energy model. We also estimate the relative growth volumes of the different polymorphs. This quantity is found to exhibit a large variation, which is generally well correlated with the attachment energy of the most dominant face of each polymorph, thus indicating how one face controls crystal growth. Such calculations suggest which thermodynamically feasible crystal structures could have a kinetic advantage in crystal growth. The application of the present results to polymorph prediction is discussed.

[1]  J. Dunitz Are crystal structures predictable? , 2003, Chemical communications.

[2]  Sarah L Price,et al.  A nonempirical anisotropic atom-atom model potential for chlorobenzene crystals. , 2003, Journal of the American Chemical Society.

[3]  G. Day,et al.  The prediction, morphology, and mechanical properties of the polymorphs of paracetamol. , 2001, Journal of the American Chemical Society.

[4]  K. Roberts,et al.  The importance of considering growth-induced conformational change in predicting the morphology of benzophenone , 1993 .

[5]  Meekes,et al.  On the prediction of crystal morphology. III. Equilibrium and growth behaviour of crystal faces containing multiple connected nets. , 1999, Acta crystallographica. Section A, Foundations of crystallography.

[6]  P. Bennema,et al.  The attachment energy as a habit controlling factor: I. Theoretical considerations , 1980 .

[7]  A. Stone,et al.  Developments in computational studies of crystallization and morphology applied to urea , 2000 .

[8]  G Nichols,et al.  Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution. , 1998, Journal of pharmaceutical sciences.

[9]  A. Gavezzotti Towards a realistic model for the quantitative evaluation of intermolecular potentials and for the rationalization of organic crystal structures. Part I. Philosophy , 2003 .

[10]  G. Day,et al.  A study of the known and hypothetical crystal structures of pyridine: why are there four molecules in the asymmetric unit cell? , 2002 .

[11]  D. Giron Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates , 1995 .

[12]  R. Boistelle,et al.  Theoretical morphology of adipic acid crystals , 2000 .

[13]  E. Boek,et al.  Analysis of morphology of crystals based on identification of interfacial structure , 1995 .

[14]  A. Gavezzotti Towards a realistic model for the quantitative evaluation of intermolecular potentials and for the rationalization of organic crystal structures. Part II. Crystal energy landscapes , 2003 .

[15]  K. Roberts,et al.  Modelling the morphology of molecular crystals in the presence of disruptive tailor-made additives , 1994 .

[16]  M. Doherty,et al.  Modeling the Crystal Shape of Polar Organic Materials: Prediction of Urea Crystals Grown from Polar and Nonpolar Solvents , 2001 .

[17]  A. Gavezzotti,et al.  Solid-State Behaviour of the Dichlorobenzenes: Actual, Semi-Virtual and Virtual Crystallography , 2001 .

[18]  K. Roberts,et al.  Modelling the morphology of molecular crystals; application to anthracene, biphenyl and β-succinic acid , 1988 .

[19]  J. V. D. Streek,et al.  Explanation for the Needle Morphology of Crystals Applied to a β‘ Triacylglycerol , 2002 .

[20]  T. C. Lewis,et al.  Which organic crystal structures are predictable by lattice energy minimisation?Electronic supplementary information (ESI) available: downloadable version of Table 2. See http://www.rsc.org/suppdata/ce/b1/b108135g/ , 2001 .

[21]  C Richard A Catlow,et al.  Theoretical and experimental investigations on the morphology of pharmaceutical crystals. , 2002, Journal of pharmaceutical sciences.

[22]  S. Price,et al.  Morphologies of organic crystals: Sensitivity of attachment energy predictions to the model intermolecular potential , 2001 .

[23]  R. W. Rousseau,et al.  Characterization of -isoleucine crystal morphology from molecular modeling , 1998 .

[24]  Donald E. Williams,et al.  Improved intermolecular force field for molecules containing H, C, N, and O atoms, with application to nucleoside and peptide crystals , 2001, J. Comput. Chem..

[25]  M. Doherty,et al.  Modeling crystal shape of polar organic materials: Applications to amino acids , 2003 .

[26]  G. Day,et al.  Sensitivity of morphology prediction to the force field: Paracetamol as an example , 2004 .

[27]  Sarah L. Price,et al.  Role of electrostatic interactions in determining the crystal structures of polar organic molecules. A distributed multipole study , 1996 .

[28]  Liu,et al.  Theoretical consideration of the growth morphology of crystals. , 1996, Physical review. B, Condensed matter.

[29]  A. Gavezzotti,et al.  Are Crystal Structures Predictable , 1994 .

[30]  P. Bennema,et al.  Prediction of the growth morphology of crystals , 1996 .

[31]  J. V. D. Streek,et al.  MONTY: Monte Carlo crystal growth on any crystal structure in any crystallographic orientation; Application to fats , 2004 .

[32]  D. Harker,et al.  A new law of crystal morphology extending the law of Bravais , 1937 .

[33]  A. Rohl,et al.  Computational investigation of surface structural relaxation in crystalline urea , 1995 .

[34]  P. Bennema,et al.  On the morphology of ammonium nitrate (III): theory and observation , 1991 .

[35]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[36]  Z. Berkovitch-yellin Toward an ab initio derivation of crystal morphology , 1985 .

[37]  M. Cima,et al.  Iterative high-throughput polymorphism studies on acetaminophen and an experimentally derived structure for form III. , 2002, Journal of the American Chemical Society.

[38]  R. F. Blanks,et al.  On the theoretical and experimental morphology of paraxylene , 1996 .

[39]  Donald E. Williams,et al.  Nonbonded Potential Function Models for Crystalline Oxohydrocarbons , 1981 .

[40]  Kenneth B. Wiberg,et al.  Comparison of atomic charges derived via different procedures , 1993, J. Comput. Chem..

[41]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[42]  H. Follner,et al.  Crystal Growth Mechanism Determined by Crystallographic and Affine Symmetries. Part II , 2000 .

[43]  Michael F. Doherty,et al.  A new technique for predicting the shape of solution‐grown organic crystals , 1998 .

[44]  David J.W. Grant,et al.  Modeling the crystal morphology of α-lactose monohydrate , 1997 .

[45]  D. E. Williams,et al.  Nonbonded potentials for azahydrocarbons: the importance of the Coulombic interaction , 1984 .