A Novel Combinatorial Public Key Cryptosystem
暂无分享,去创建一个
[1] Neal Koblitz,et al. Algebraic aspects of cryptography , 1998, Algorithms and computation in mathematics.
[2] Eligijus Sakalauskas. One Digital Signature Scheme in Semimodule over Semiring , 2005, Informatica.
[3] Jianhua Li,et al. Delegatability of an Identity Based Strong Designated Verifier Signature Scheme , 2010, Informatica.
[4] Martin E. Hellman,et al. Hiding information and signatures in trapdoor knapsacks , 1978, IEEE Trans. Inf. Theory.
[5] Jenshiuh Liu,et al. Identity-Based Threshold Proxy Signature from Bilinear Pairings , 2010, Informatica.
[6] William Whyte,et al. NAEP: Provable Security in the Presence of Decryption Failures , 2003, IACR Cryptol. ePrint Arch..
[7] Haifeng Qian,et al. Adaptively Secure Threshold Signature Scheme in the Standard Model , 2009, Informatica.
[8] Yupu Hu,et al. Quadratic compact knapsack public-key cryptosystem , 2010, Comput. Math. Appl..
[9] Martin Kreuzer,et al. Gröbner Basis Cryptosystems , 2006, Applicable Algebra in Engineering, Communication and Computing.
[10] Dennis Hofheinz,et al. A "differential" attack on Polly Cracker , 2002, Proceedings IEEE International Symposium on Information Theory,.
[11] Adi Shamir,et al. Lattice Attacks on NTRU , 1997, EUROCRYPT.
[12] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[13] M. Fellows. Combinatorial Cryptosystems Galore! , 2022 .
[14] Rainer Steinwandt,et al. Cryptanalysis of Polly Cracker , 2002, IEEE Trans. Inf. Theory.
[15] Arjen K. Lenstra,et al. The number field sieve , 1990, STOC '90.
[16] Jung Hee Cheon,et al. New Public-Key Cryptosystem Using Braid Groups , 2000, CRYPTO.
[17] SakalauskasEligijus,et al. Key Agreement Protocol (KAP) Using Conjugacy and Discrete Logarithm Problems in Group Representation Level , 2007 .
[18] Yupu Hu,et al. A knapsack-based probabilistic encryption scheme , 2007, Inf. Sci..
[19] Andrew Odlyzko,et al. The Rise and Fall of Knapsack Cryptosystems , 1998 .
[20] Eligijus Sakalauskas. New Digital Signature Scheme in Gaussian Monoid , 2004, Informatica.
[21] Ronald L. Rivest,et al. A knapsack-type public key cryptosystem based on arithmetic in finite fields , 1988, IEEE Trans. Inf. Theory.
[22] Eligijus Sakalauskas,et al. Key Agreement Protocol (KAP) Using Conjugacy and Discrete Logarithm Problems in Group Representation Level , 2007, Informatica.
[23] Arkadius G. Kalka. Representation Attacks on the Braid Diffie-Hellman Public Key Encryption , 2006, Applicable Algebra in Engineering, Communication and Computing.
[24] Adi Shamir,et al. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem , 1984, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[25] Antoine Joux,et al. Lattice Reduction: A Toolbox for the Cryptanalyst , 1998, Journal of Cryptology.
[26] Rainer Steinwandt,et al. Attacking a polynomial-based cryptosystem: Polly Cracker , 2002, International Journal of Information Security.
[27] Le Van Ly. Polly two : a new algebraic polynomial-based Public-Key Scheme , 2022 .
[28] Joseph H. Silverman,et al. NTRU: A Ring-Based Public Key Cryptosystem , 1998, ANTS.
[29] D. Goldfeld,et al. An algebraic method for public-key cryptography , 1999 .
[30] Adi Shamir,et al. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).