Digging into the Sequential Space of Thiolactone Precision Polymers: A Combinatorial Strategy to Identify Functional Domains.

Functional sequences of precision polymers based on thiolactone/Michael chemistry are identified from a large one-bead one-compound library. Single-bead readout by MALDI-TOF MS/MS identifies sequences that host m-THPC that is a second generation photo-sensitizer drug. The corresponding Tla/Michael-PEG conjugates make m-THPC available in solution and drug payload as well as drug release kinetics can be fine-tuned by the precision segment.

[1]  H. Börner,et al.  Easy Access to Functional Patterns on Cellulose Paper by Combining Laser Printing and Material-Specific Peptide Adsorption. , 2016, Angewandte Chemie.

[2]  F. Diederich,et al.  Bioconjugates to specifically render inhibitors water-soluble , 2010 .

[3]  Hans G. Börner,et al.  Making "Smart Polymers" Smarter: Modern Concepts to Regulate Functions in Polymer Science , 2010 .

[4]  L. K. Ely,et al.  Dissecting the role of peptides in the immune response: theory, practice and the application to vaccine design , 2003, Journal of peptide science : an official publication of the European Peptide Society.

[5]  David R. Liu,et al.  Sequence-Controlled Polymers , 2013, Science.

[6]  P. Adriaensens,et al.  Synthesis of sequence controlled acrylate oligomers via consecutive RAFT monomer additions. , 2013, Chemical communications.

[7]  Jean-François Lutz,et al.  Design and synthesis of digitally encoded polymers that can be decoded and erased , 2015, Nature Communications.

[8]  N. T. Brummelhuis,et al.  Controlling monomer-sequence using supramolecular templates , 2015 .

[9]  Arne Thomas,et al.  Mimicking biosilicification: programmed coassembly of peptide-polymer nanotapes and silica. , 2007, Angewandte Chemie.

[10]  Jean-François Lutz,et al.  Mass spectrometry sequencing of long digital polymers facilitated by programmed inter-byte fragmentation , 2017, Nature Communications.

[11]  Stephen B. H. Kent,et al.  Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis , 1992 .

[12]  H. Börner Precision polymers--modern tools to understand and program macromolecular interactions. , 2011, Macromolecular rapid communications.

[13]  Damien Faivre,et al.  A direct biocombinatorial strategy toward next generation, mussel-glue inspired saltwater adhesives. , 2014, Journal of the American Chemical Society.

[14]  E. Mandelkow,et al.  Generalizing the Concept of Specific Compound Formulation Additives towards Non-Fluorescent Drugs: A Solubilization Study on Potential Anti-Alzheimer-Active Small-Molecule Compounds. , 2016, Angewandte Chemie.

[15]  H. Börner,et al.  Peptide–Polymer Conjugates for Bioinspired Compatibilization of Internal Composite Interfaces: via Specific Interactions toward Stiffer and Tougher Materials , 2017 .

[16]  A. Madder,et al.  Automated Synthesis of Monodisperse Oligomers, Featuring Sequence Control and Tailored Functionalization. , 2016, Journal of the American Chemical Society.

[17]  H. Börner,et al.  Fine-tuning Nanocarriers Specifically toward Cargo: A Competitive Study on Solubilizing Related Photosensitizers for Photodynamic Therapy. , 2017, Bioconjugate chemistry.

[18]  Kenichi Takizawa,et al.  Molecularly defined caprolactone oligomers and polymers: synthesis and characterization. , 2008, Journal of the American Chemical Society.

[19]  M. Ouchi,et al.  Template-assisted selective radical addition toward sequence-regulated polymerization: lariat capture of target monomer by template initiator. , 2010, Journal of the American Chemical Society.

[20]  Andreas Herrmann,et al.  DNA-surfactant complexes: self-assembly properties and applications. , 2017, Chemical Society reviews.

[21]  J. Martins,et al.  Multifunctionalized sequence-defined oligomers from a single building block. , 2013, Angewandte Chemie.

[22]  A. Herrmann,et al.  DNA block copolymers: functional materials for nanoscience and biomedicine. , 2012, Accounts of chemical research.

[23]  Jean-François Lutz,et al.  Synthesis of molecularly encoded oligomers using a chemoselective "AB + CD" iterative approach. , 2014, Macromolecular rapid communications.

[24]  H. Börner,et al.  Ein einfacher Zugang zu funktionalen Mustern auf Cellulosepapier durch Kombination von Laserdruck und materialspezifischer Peptidadsorption , 2016 .

[25]  Craig J. Hawker,et al.  A General Approach to Sequence-Controlled Polymers Using Macrocyclic Ring Opening Metathesis Polymerization , 2015, Journal of the American Chemical Society.

[26]  R. Haag,et al.  Intradermal drug delivery by nanogel-peptide conjugates; specific and efficient transport of temoporfin. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[27]  Michael A. R. Meier,et al.  Eine skalierbare Synthese sequenzdefinierter Makromoleküle mit hohen Ausbeuten , 2016 .

[28]  M. Meier,et al.  A Scalable and High-Yield Strategy for the Synthesis of Sequence-Defined Macromolecules. , 2016, Angewandte Chemie.

[29]  Sébastien Perrier,et al.  Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. , 2015, Nature materials.

[30]  H. Börner,et al.  PEGylated Precision Segments Based on Sequence-Defined Thiolactone Oligomers. , 2017, Macromolecular rapid communications.

[31]  H. Börner,et al.  Precision Polymers: Monodisperse, Monomer‐Sequence‐Defined Segments to Target Future Demands of Polymers in Medicine , 2009, Advanced materials.

[32]  E. Mandelkow,et al.  On the way to precision formulation additives: 2D‐screening to select solubilizers with tailored host and release capabilities , 2018, Journal of controlled release : official journal of the Controlled Release Society.

[33]  H. Börner Strategies exploiting functions and self-assembly properties of bioconjugates for polymer and materials sciences , 2009 .

[34]  Jean-François Lutz,et al.  Abiotic Sequence-Coded Oligomers as Efficient In Vivo Taggants for the Identification of Implanted Materials. , 2018, Angewandte Chemie.

[35]  S. Hackbarth,et al.  Exploiting specific interactions toward next-generation polymeric drug transporters. , 2013, Journal of the American Chemical Society.

[36]  Mintu Porel,et al.  Sequence-defined polymers via orthogonal allyl acrylamide building blocks. , 2014, Journal of the American Chemical Society.

[37]  G. Pasut Polymers for Protein Conjugation , 2014 .

[38]  M. Ouchi,et al.  Sequence-controlled polymers via reversible-deactivation radical polymerization , 2018 .

[39]  A. Herrmann,et al.  Selective Peptide-Mediated Enhanced Deposition of Polymer Fragrance Delivery Systems on Human Hair. , 2017, ACS applied materials & interfaces.

[40]  Lei Tao,et al.  From Polymer Sequence Control to Protein Recognition: Synthesis, Self-Assembly and Lectin Binding , 2014 .

[41]  H. Börner,et al.  Advancing Drug Formulation Additives toward Precision Additives with Release Mediating Peptide Interlayer. , 2016, Journal of the American Chemical Society.

[42]  R. Zuckermann,et al.  Peptoid polymers: a highly designable bioinspired material. , 2013, ACS nano.

[43]  E. Mandelkow,et al.  Erweiterung des Konzeptes spezifischer Wirkstoff‐Formulierungsadditive auf nichtfluoreszierende Wirkstoffe: eine Studie zur Solubilisierung potenzieller Anti‐Alzheimer‐Wirkstoffe , 2016 .

[44]  C. Alabi,et al.  Sequence-defined bioactive macrocycles via an acid-catalysed cascade reaction. , 2016, Nature chemistry.

[45]  Joris J. Haven,et al.  Efficiency assessment of single unit monomer insertion reactions for monomer sequence control: kinetic simulations and experimental observations , 2015 .

[46]  Krzysztof Matyjaszewski,et al.  From precision polymers to complex materials and systems , 2016 .

[47]  C. Hawker,et al.  Synthesis of Discrete Oligomers by Sequential PET-RAFT Single-Unit Monomer Insertion. , 2017, Angewandte Chemie.

[48]  H. Börner,et al.  Generic Biocombinatorial Strategy to Select Tailor-Made Stabilizers for Sol-Gel Nanoparticle Synthesis. , 2015, Small.

[49]  K. Lam,et al.  A new type of synthetic peptide library for identifying ligand-binding activity , 1992, Nature.