Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals.

Atomic compositions and molar extinction coefficients of PbSe semiconductor nanocrystals were determined by atomic absorption spectrometry, UV-vis-NIR spectrophotometry, and transmission electron microscopy. The Pb/Se atomic ratio was found to be size-dependent with a systematic excess of Pb atoms in the PbSe nanocrystal system. Experimental results indicated that the individual PbSe nanocrystal was nonstoichiometric, consisting of a PbSe core and an extra layer of Pb atoms. For these nonstoichiometric PbSe semiconductor nanocrystals, we proposed a new computational approach to calculate the total number of Pb and Se atoms in different sized particles. This calculation played a key role on the accurate determination of the strongly size-dependent extinction coefficient, which followed a power law with an exponent of approximately 2.5.

[1]  Frank W. Wise,et al.  Lead Salt Quantum Dots: The Limit of Strong Quantum Confinement , 2001 .

[2]  Arthur J. Nozik,et al.  Synthesis and Characterization of Surface-Modified Colloidal CdTe Quantum Dots , 1993 .

[3]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[4]  Calvin Curtis,et al.  Absorption cross-section and related optical properties of colloidal InAs quantum dots. , 2005, The journal of physical chemistry. B.

[5]  Darrick J. Williams,et al.  Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. , 2008, Journal of the American Chemical Society.

[6]  A. Alivisatos,et al.  Molecular Weight, Osmotic Second Virial Coefficient, and Extinction Coefficient of Colloidal CdSe Nanocrystals , 2002 .

[7]  Ludovico Cademartiri,et al.  Size-dependent extinction coefficients of PbS quantum dots. , 2006, Journal of the American Chemical Society.

[8]  Matthew C. Beard,et al.  Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model. , 2008, Nano letters.

[9]  Alf Mews,et al.  Supramolecular Complexes from CdSe Nanocrystals and Organic Fluorophors , 2001 .

[10]  Xiaogang Peng,et al.  Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals , 2003 .

[11]  R. Weissleder A clearer vision for in vivo imaging , 2001, Nature Biotechnology.

[12]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[13]  Zeger Hens,et al.  Surface chemistry of colloidal PbSe nanocrystals. , 2008, Journal of the American Chemical Society.

[14]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[15]  Moungi G. Bawendi,et al.  On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots , 2002 .

[16]  R. Schaller,et al.  Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. , 2006, Nano letters.

[17]  Xiaogang Peng,et al.  Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. , 2002, Angewandte Chemie.

[18]  Edward H. Sargent,et al.  Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. , 2008, ACS nano.

[19]  Xiaogang Peng,et al.  Highly luminescent, stable, and water-soluble CdSe/CdS core-shell dendron nanocrystals with carboxylate anchoring groups. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[20]  Ariel Kigel,et al.  Synthesis and Characterization of PbSe Quantum Wires, Multipods, Quantum Rods, and Cubes , 2003 .

[21]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[22]  Dirk Poelman,et al.  Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots , 2007 .

[23]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[24]  M. Bawendi,et al.  Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence , 2008, 0806.1966.

[25]  J. Ge,et al.  Solvothermal synthesis of monodisperse PbSe nanocrystals. , 2006, The journal of physical chemistry. B.

[26]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[27]  Xiaogang Peng,et al.  In Situ Observation of the Nucleation and Growth of CdSe Nanocrystals , 2004 .

[28]  Tobias Vossmeyer,et al.  CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift , 1994 .

[29]  Christopher B. Murray,et al.  Colloidal synthesis of nanocrystals and nanocrystal superlattices , 2001, IBM J. Res. Dev..

[30]  Matthew B. Johnson,et al.  Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. , 2003, Journal of the American Chemical Society.

[31]  Frank W. Wise,et al.  Optical Properties of Colloidal PbSe Nanocrystals , 2002 .

[32]  Vicki L. Colvin,et al.  Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent , 2004 .

[33]  P. Guyot-Sionnest,et al.  Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots , 2002 .

[34]  Rebekah Drezek,et al.  Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. , 2007, Journal of the American Chemical Society.

[35]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.