Nutrient signaling to mTOR and cell growth.

[1]  Sang Gyun Kim,et al.  Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. , 2013, Molecular cell.

[2]  R. Deberardinis,et al.  The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy. , 2012, Molecular cell.

[3]  K. E. van der Vos,et al.  Glutamine metabolism links growth factor signaling to the regulation of autophagy , 2012, Autophagy.

[4]  D. Sabatini,et al.  Ragulator Is a GEF for the Rag GTPases that Signal Amino Acid Levels to mTORC1 , 2012, Cell.

[5]  Roberto Zoncu,et al.  Amino acids and mTORC1: from lysosomes to disease. , 2012, Trends in molecular medicine.

[6]  P. Finan,et al.  TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. , 2012, Molecular cell.

[7]  E. Gottlieb,et al.  Glutaminolysis activates Rag-mTORC1 signaling. , 2012, Molecular cell.

[8]  M. G. Koerkamp,et al.  Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy , 2012, Nature Cell Biology.

[9]  Timothy J Griffin,et al.  SH3BP4 is a negative regulator of amino acid-Rag GTPase-mTORC1 signaling. , 2012, Molecular cell.

[10]  D. Goberdhan,et al.  Proton-Assisted Amino Acid Transporter PAT1 Complexes with Rag GTPases and Activates TORC1 on Late Endosomal and Lysosomal Membranes , 2012, PloS one.

[11]  C. De Virgilio,et al.  Leucyl-tRNA synthetase controls TORC1 via the EGO complex. , 2012, Molecular cell.

[12]  Sunghoon Kim,et al.  Leucyl-tRNA Synthetase Is an Intracellular Leucine Sensor for the mTORC1-Signaling Pathway , 2012, Cell.

[13]  D. Sabatini,et al.  A unifying model for mTORC1-mediated regulation of mRNA translation , 2012, Nature.

[14]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[15]  D. Hardie,et al.  AMPK: a nutrient and energy sensor that maintains energy homeostasis , 2012, Nature Reviews Molecular Cell Biology.

[16]  Nicholas T. Ingolia,et al.  The translational landscape of mTOR signalling steers cancer initiation and metastasis , 2012, Nature.

[17]  P. Soares,et al.  The mTOR Signalling Pathway in Human Cancer , 2012, International journal of molecular sciences.

[18]  G. Bellenchi,et al.  Mechanism of proton/substrate coupling in the heptahelical lysosomal transporter cystinosin , 2012, Proceedings of the National Academy of Sciences.

[19]  Roberto Zoncu,et al.  mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase , 2011, Science.

[20]  J. Backer,et al.  Class III PI-3-kinase activates phospholipase D in an amino acid–sensing mTORC1 pathway , 2011, The Journal of cell biology.

[21]  M. Pagano,et al.  mTOR generates an auto-amplification loop by triggering the βTrCP- and CK1α-dependent degradation of DEPTOR. , 2011, Molecular cell.

[22]  S. Gygi,et al.  mTOR drives its own activation via SCF(βTrCP)-dependent degradation of the mTOR inhibitor DEPTOR. , 2011, Molecular cell.

[23]  Yi Sun,et al.  DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin ligase and regulates survival and autophagy. , 2011, Molecular cell.

[24]  Aleksey A. Porollo,et al.  p62 is a key regulator of nutrient sensing in the mTORC1 pathway. , 2011, Molecular cell.

[25]  R. Shaw,et al.  The AMPK signalling pathway coordinates cell growth, autophagy and metabolism , 2011, Nature Cell Biology.

[26]  K. Guan,et al.  Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. , 2011, Genes & development.

[27]  E. Jacinto,et al.  mTOR complex 2 signaling and functions , 2011, Cell cycle.

[28]  K. Guan,et al.  Amino acid signaling in TOR activation. , 2011, Annual review of biochemistry.

[29]  Michael A. Koldobskiy,et al.  Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. , 2011, Cell metabolism.

[30]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[31]  D. Sabatini,et al.  mTOR: from growth signal integration to cancer, diabetes and ageing , 2010, Nature Reviews Molecular Cell Biology.

[32]  Z. Hořejší,et al.  CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. , 2010, Molecular cell.

[33]  Eric D. Spear,et al.  Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals. , 2010, Journal of molecular biology.

[34]  D. Goberdhan,et al.  Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation , 2010, Oncogene.

[35]  D. Hailey,et al.  Autophagy termination and lysosome reformation regulated by mTOR , 2010, Nature.

[36]  T. P. Neufeld,et al.  Regulation of mTORC1 by the Rab and Arf GTPases* , 2010, The Journal of Biological Chemistry.

[37]  Tohru Natsume,et al.  Tti1 and Tel2 Are Critical Factors in Mammalian Target of Rapamycin Complex Assembly* , 2010, The Journal of Biological Chemistry.

[38]  D. Sabatini,et al.  Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids , 2010, Cell.

[39]  D. Burgess,et al.  PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR. , 2010, Molecular cell.

[40]  Nicolas Panchaud,et al.  The Vam6 GEF controls TORC1 by activating the EGO complex. , 2009, Molecular cell.

[41]  She Chen,et al.  ULK1·ATG13·FIP200 Complex Mediates mTOR Signaling and Is Essential for Autophagy* , 2009, Journal of Biological Chemistry.

[42]  J. Blenis,et al.  Molecular mechanisms of mTOR-mediated translational control , 2009, Nature Reviews Molecular Cell Biology.

[43]  C. Jung,et al.  ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. , 2009, Molecular biology of the cell.

[44]  J. Avruch,et al.  Amino acid regulation of TOR complex 1. , 2009, American journal of physiology. Endocrinology and metabolism.

[45]  M. Okada,et al.  The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK–ERK pathway to late endosomes , 2009, The EMBO journal.

[46]  Jeffrey P. MacKeigan,et al.  Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy , 2009, Cell.

[47]  M. Murakami,et al.  RalA Functions as an Indispensable Signal Mediator for the Nutrient-sensing System* , 2008, Journal of Biological Chemistry.

[48]  Jie Chen,et al.  mTOR signaling: PLD takes center stage , 2008, Cell cycle.

[49]  T. P. Neufeld,et al.  Regulation of TORC1 by Rag GTPases in nutrient response , 2008, Nature Cell Biology.

[50]  David M. Sabatini,et al.  The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1 , 2008, Science.

[51]  F. Natt,et al.  Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. , 2008, Cell metabolism.

[52]  B. Turk,et al.  AMPK phosphorylation of raptor mediates a metabolic checkpoint. , 2008, Molecular cell.

[53]  T. Lange,et al.  Tel2 Regulates the Stability of PI3K-Related Protein Kinases , 2007, Cell.

[54]  V. Mieulet,et al.  A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. , 2007, The Biochemical journal.

[55]  K. Isobe,et al.  GADD34 inhibits mammalian target of rapamycin signaling via tuberous sclerosis complex and controls cell survival under bioenergetic stress. , 2007, International journal of molecular medicine.

[56]  Ming You,et al.  TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth , 2006, Cell.

[57]  V. Stambolic,et al.  Localization of Rheb to the endomembrane is critical for its signaling function. , 2006, Biochemical and biophysical research communications.

[58]  M. Brandsch,et al.  Substrate specificity of the amino acid transporter PAT1 , 2006, Amino Acids.

[59]  D. Sabatini,et al.  Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. , 2006, Molecular cell.

[60]  M. Neeman,et al.  Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. , 2006, Cancer cell.

[61]  K. Inoki,et al.  TSC1 Stabilizes TSC2 by Inhibiting the Interaction between TSC2 and the HERC1 Ubiquitin Ligase* , 2006, Journal of Biological Chemistry.

[62]  Hong Chen,et al.  Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. , 2005, Annual review of nutrition.

[63]  E. Cameroni,et al.  The TOR and EGO protein complexes orchestrate microautophagy in yeast. , 2005, Molecular cell.

[64]  J. Avruch,et al.  Rheb Binding to Mammalian Target of Rapamycin (mTOR) Is Regulated by Amino Acid Sufficiency* , 2005, Journal of Biological Chemistry.

[65]  D. Meredith,et al.  PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids , 2005, Development.

[66]  Joseph Avruch,et al.  Rheb Binds and Regulates the mTOR Kinase , 2005, Current Biology.

[67]  E. Hafen,et al.  The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. , 2004, Genes & development.

[68]  E. Hafen,et al.  Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. , 2004, Genes & development.

[69]  R. Loewith,et al.  Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive , 2004, Nature Cell Biology.

[70]  T. Anthony,et al.  Preservation of Liver Protein Synthesis during Dietary Leucine Deprivation Occurs at the Expense of Skeletal Muscle Mass in Mice Deleted for eIF2 Kinase GCN2* , 2004, Journal of Biological Chemistry.

[71]  D. Guertin,et al.  Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton , 2004, Current Biology.

[72]  Sebastian Maurer-Stroh,et al.  Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  M. Cygler,et al.  The Structure of the MAPK Scaffold, MP1, Bound to Its Partner, p14 , 2004, Journal of Biological Chemistry.

[74]  K. Inoki,et al.  Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. , 2003, Genes & development.

[75]  B. Edgar,et al.  Rheb promotes cell growth as a component of the insulin/TOR signalling network , 2003, Nature Cell Biology.

[76]  E. Hafen,et al.  Rheb is an essential regulator of S6K in controlling cell growth in Drosophila , 2003, Nature Cell Biology.

[77]  B. Edgar,et al.  Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins , 2003, Nature Cell Biology.

[78]  E. Hafen,et al.  Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. , 2003, Molecular cell.

[79]  Paul Tempst,et al.  GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. , 2003, Molecular cell.

[80]  S. Kimball,et al.  The GCN2 eIF2α Kinase Is Required for Adaptation to Amino Acid Deprivation in Mice , 2002, Molecular and Cellular Biology.

[81]  David J. Kwiatkowski,et al.  Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J. Crespo,et al.  Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. , 2002, Molecular cell.

[83]  D. Sabatini,et al.  mTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex that Signals to the Cell Growth Machinery , 2002, Cell.

[84]  B. Giros,et al.  Identification and characterization of a lysosomal transporter for small neutral amino acids , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[85]  D. Ron,et al.  Feedback Inhibition of the Unfolded Protein Response by GADD34-Mediated Dephosphorylation of eIF2α , 2001, The Journal of cell biology.

[86]  G. Benvenuto,et al.  The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination , 2000, Oncogene.

[87]  C. Proud,et al.  Amino acid availability regulates p70 S6 kinase and multiple translation factors. , 1998, The Biochemical journal.

[88]  J. Avruch,et al.  Amino Acid Sufficiency and mTOR Regulate p70 S6 Kinase and eIF-4E BP1 through a Common Effector Mechanism* , 1998, The Journal of Biological Chemistry.

[89]  R. Abraham,et al.  Isolation of a Protein Target of the FKBP12-Rapamycin Complex in Mammalian Cells (*) , 1995, The Journal of Biological Chemistry.

[90]  Paul Tempst,et al.  RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs , 1994, Cell.

[91]  Stuart L. Schreiber,et al.  A mammalian protein targeted by G1-arresting rapamycin–receptor complex , 1994, Nature.

[92]  J. Kunz,et al.  Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression , 1993, Cell.

[93]  J. Heitman,et al.  Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast , 1991, Science.

[94]  細川 奈生 Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy , 2010 .

[95]  A. Wittinghofer,et al.  GEFs and GAPs: Critical Elements in the Control of Small G Proteins , 2007, Cell.