Antitumor characteristics of methoxypolyethylene glycol-poly(DL-lactic acid) nanoparticles containing camptothecin.

[1]  R. Gurny,et al.  Cell interaction studies of PLA-MePEG nanoparticles. , 2003, International journal of pharmaceutics.

[2]  Richard B Greenwald,et al.  Effective drug delivery by PEGylated drug conjugates. , 2003, Advanced drug delivery reviews.

[3]  Y. Sugiyama,et al.  Long-circulating poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles with modulated surface charge. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[4]  K. Avgoustakis,et al.  Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA-mPEG nanoparticles. , 2001, International journal of pharmaceutics.

[5]  J. Lee,et al.  Phase I and pharmacokinetic study of exatecan mesylate (DX-8951f): a novel camptothecin analog. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  M. Bally,et al.  Liposomal encapsulation of topotecan enhances anticancer efficacy in murine and human xenograft models. , 2000, Cancer research.

[7]  N. Tsuda,et al.  Complete regression of xenografted human carcinomas by camptothecin analogue-carboxymethyl dextran conjugate (T-0128). , 2000, Cancer research.

[8]  Y. Machida,et al.  Pharmacokinetics of prolonged-release CPT-11-loaded microspheres in rats. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[9]  J. Feijen,et al.  Cellular Uptake of PEO Surface-Modified Nanoparticles: Evaluation of Nanoparticles Made of PLA: PEO Diblock and Triblock Copolymers , 2000, Journal of drug targeting.

[10]  Y. Cai,et al.  Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[11]  S. Hirota,et al.  Effect of liposomalization on the antitumor activity, side-effects and tissue distribution of CPT-11. , 1998, Cancer letters.

[12]  Y. Ikada,et al.  Tumor accumulation of poly(vinyl alcohol) of different sizes after intravenous injection. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[13]  Lawrence Mayer,et al.  Anti-tumor efficacy and biodistribution of intravenous polymeric micellar paclitaxel , 1997, Anti-cancer drugs.

[14]  Martyn C. Davies,et al.  In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers , 1997 .

[15]  A. Kurihara,et al.  Enhanced Tumor Delivery and Antitumor Activity of Palmitoyl Rhizoxin Using Stable Lipid Emulsions in Mice , 1996, Pharmaceutical Research.

[16]  J. M. Shaw,et al.  Formulation and Antitumor Activity Evaluation of Nanocrystalline Suspensions of Poorly Soluble Anticancer Drugs , 1996, Pharmaceutical Research.

[17]  K. Maruyama,et al.  Enhanced tumor targeting and improved antitumor activity of doxorubicin by long-circulating liposomes containing amphipathic poly(ethylene glycol) , 1995 .

[18]  D. Bazile,et al.  Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. , 1995, Journal of pharmaceutical sciences.

[19]  N. Saijo,et al.  A Limited Sampling Model for Estimating Pharmacokinetics of CPT‐11 and Its Metabolite SN‐38 , 1995, Japanese journal of cancer research : Gann.

[20]  V. Torchilin,et al.  Biodegradable long-circulating polymeric nanospheres. , 1994, Science.

[21]  M. Iigo,et al.  Relationship between Development of Diarrhea and the Concentration of SN‐38, an Active Metabolite of CPT‐11, in the Intestine and the Blood Plasma of Athymic Mice Following Intraperitoneal Administration of CPT‐11 , 1993, Japanese journal of cancer research : Gann.

[22]  M. Woodle,et al.  Sterically stabilized liposomes. , 1992, Biochimica et biophysica acta.

[23]  H. Kuga,et al.  Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. , 1991, Cancer research.

[24]  T. Okano,et al.  Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. , 1991, Cancer research.

[25]  B. Giovanella,et al.  Complete growth inhibition of human cancer xenografts in nude mice by treatment with 20-(S)-camptothecin. , 1991, Cancer research.

[26]  T. Yokokura,et al.  Nonlinear pharmacokinetics of CPT-11 in rats. , 1990, Cancer research.

[27]  T. Furuta,et al.  Metabolism and pharmacokinetics of the camptothecin analogue CPT-11 in the mouse. , 1990, Cancer research.

[28]  L. Liu,et al.  DNA topoisomerase I--targeted chemotherapy of human colon cancer in xenografts. , 1989, Science.

[29]  M. Hashida,et al.  Disposition and Tumor Localization of Mitomycin C–Dextran Conjugates in Mice , 1987, Pharmaceutical Research.

[30]  H. Maeda,et al.  A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. , 1986, Cancer research.

[31]  U Schaeppi,et al.  Toxicity of camptothecin (NSC-100880). , 1974, Cancer chemotherapy reports. Part 3.

[32]  Muggia Fm,et al.  Plasma camptothecin (NSC-100880) levels during a 5-day course of treatment: relation to dose and toxicity. , 1972 .

[33]  H. Hansen,et al.  Phase I clinical trial of weekly and daily treatment with camptothecin (NSC-100880): correlation with preclinical studies. , 1972, Cancer chemotherapy reports.

[34]  R. Adamson,et al.  Studies on the antitumor activity, mechanism of action, and cell cycle effects of camptothecin. , 1971, Journal of the National Cancer Institute.

[35]  A. Guarino,et al.  Preliminary pharmacologic and clinical evaluation of camptothecin sodium (NSC-100880). , 1970, Cancer chemotherapy reports.

[36]  A. McPhail,et al.  Plant Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata1,2 , 1966 .

[37]  T. Tsuruo,et al.  Antitumor effect of CPT-11, a new derivative of camptothecin, against pleiotropic drug-resistant tumors in vitro and in vivo , 2004, Cancer Chemotherapy and Pharmacology.

[38]  Rakesh K. Jain,et al.  Transport of molecules across tumor vasculature , 2004, Cancer and Metastasis Reviews.

[39]  A. Tolcher,et al.  A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[40]  Y. Machida,et al.  Antitumor properties of irinotecan-containing nanoparticles prepared using poly(DL-lactic acid) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol). , 2003, Biological & pharmaceutical bulletin.

[41]  P. Legrand,et al.  Interactions between a macrophage cell line (J774A1) and surface-modified poly (D,L-lactide) nanocapsules bearing poly(ethylene glycol). , 1999, Journal of drug targeting.

[42]  Y. Machida,et al.  Antitumour characteristics of irinotecan-containing microspheres of poly-d, l-lactic acid or poly(d, l-lactic acid-co-glycolic acid) copolymers , 1998 .

[43]  T Nakagawa,et al.  A pharmacokinetic analysis program (multi) for microcomputer. , 1981, Journal of pharmacobio-dynamics.