Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors

Abstract Electrochemical capacitors that can store high density of electrical energy with fast power delivering and long operating life time are important for many challenging applications. Tremendous research efforts aim at developing electrodes which gather the advantages of both electrochemical double layer capacitors (high power density, long cycling life) and pseudo-capacitors (high energy density). Here we highlight the design of hierarchically composite electrodes consisting of porous and nanostructured TiN grown on vertically aligned CNTs as high-performance electrode for micro-supercapacitors. The electrodes, which are deposited on silicon substrates, exhibit an areal capacitance as high as 18.3 mF cm −2 at 1 V s −1 that can be further enhanced by increasing the TiN layer thickness. Furthermore, this capacitance is maintained over 20,000 cycles. We propose that such high performance originates from the high surface area of the electrodes having a nanoporous structure, as well as to their specific surface chemistry, which contains large amount of oxygen vacancies as a result of nitrogen self-doping of anatase which forms at the TiN surface.

[1]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[2]  Wei‐De Zhang,et al.  Fabrication of a vertically aligned carbon nanotube electrode and its modification by nanostructured MnO2 for supercapacitors , 2009 .

[3]  Joachim Oberhammer,et al.  IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Sorrento, Italy, January 25-29, 2009 , 2009 .

[4]  T. Lim,et al.  Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. , 2005, Small.

[5]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[6]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[7]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[8]  Sang Bok Lee,et al.  Nanotubular metal-insulator-metal capacitor arrays for energy storage. , 2009, Nature nanotechnology.

[9]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[10]  D. Tsai,et al.  Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods , 2010 .

[11]  N. A. Deskins,et al.  Defining the Role of Excess Electrons in the Surface Chemistry of TiO2 , 2010 .

[12]  T. Seong,et al.  Charge-discharge induced phase transformation of RuO2 electrode for thin film supercapacitor , 2003 .

[13]  Wei Sun,et al.  Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes , 2010 .

[14]  A. Lavacchi,et al.  XRD and XPS study on reactive plasma sprayed titanium titanium nitride coatings , 2001 .

[15]  G. Cui,et al.  Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage. , 2011, ACS applied materials & interfaces.

[16]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[17]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[18]  Yongli He,et al.  Raman scattering study on anatase TiO2 nanocrystals , 2000 .

[19]  U. Diebold,et al.  Influence of Subsurface Defects on the Surface Reactivity of TiO2: Water on Anatase (101) , 2010 .

[20]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[21]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[22]  D. Choi,et al.  Nanocrystalline TiN Derived by a Two-Step Halide Approach for Electrochemical Capacitors , 2006 .

[23]  Yan Lu,et al.  Dumbbell-shaped polyelectrolyte brushes studied by depolarized dynamic light scattering. , 2008, The journal of physical chemistry. B.

[24]  Xudong Jiang,et al.  High Concentration Substitutional N‐Doped TiO2 Film: Preparation, Characterization, and Photocatalytic Property , 2011 .

[25]  Xueping Gao,et al.  Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. , 2009, Chemical communications.

[26]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[27]  P. Haldar,et al.  On the stability of TiN-based electrocatalysts for fuel cell applications , 2011 .

[28]  B. Lax,et al.  Raman scattering inTi2O3-V2O3alloys , 1974 .

[29]  R. Egdell,et al.  Nitrogen diffusion in doped TiO2 (110) single crystals: a combined XPS and SIMS study , 2009 .

[30]  M. Wong,et al.  Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst , 2006 .

[31]  G. Rubloff,et al.  MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage. , 2011, Physical chemistry chemical physics : PCCP.

[32]  T. Hitosugi,et al.  One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO2 films , 2008 .

[33]  M. Hoefer,et al.  Determination and enhancement of the capacitance contributions in carbon nanotube based electrode systems , 2009 .

[34]  L. Wan,et al.  Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation , 2007 .

[35]  Huakun Liu,et al.  Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies , 2011 .

[36]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[37]  Ning Zhang,et al.  Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance , 2013 .

[38]  F. Kang,et al.  Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices , 2013, Scientific Reports.

[39]  Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes. , 2011, Nano letters.

[40]  P. Tessier,et al.  Carbon nanotube growth at 420 °C using nickel/carbon composite thin films as catalyst supports , 2013 .

[41]  N. Halas,et al.  Tailoring plasmonic substrates for surface enhanced spectroscopies. , 2008, Chemical Society reviews.

[42]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[43]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[44]  Yumeng Shi,et al.  CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor , 2014 .

[45]  W. Fang,et al.  Superior capacitive property of RuO2 nanoparticles on carbon nanotubes incorporated with nitrogen , 2007 .

[46]  Norbert Fabre,et al.  Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor , 2010 .

[47]  M. Armand,et al.  Building better batteries , 2008, Nature.

[48]  Hiroshi Onishi,et al.  Direct visualization of defect-mediated dissociation of water on TiO2(110) , 2006 .

[49]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[50]  Feng Li,et al.  Anchoring Hydrous RuO2 on Graphene Sheets for High‐Performance Electrochemical Capacitors , 2010 .