Rapid‐Setting, Mesoporous, Bioactive Glass Cements that Induce Accelerated In Vitro Apatite Formation

[1]  C. Simon,et al.  Premixed rapid-setting calcium phosphate composites for bone repair. , 2005, Biomaterials.

[2]  Masayuki Otsuki,et al.  Materials chemistry: A synthetic enamel for rapid tooth repair , 2005, Nature.

[3]  Sumin Zhu,et al.  Preparation and characterization of macroporous sol–gel bioglass , 2005 .

[4]  Xufeng Zhou,et al.  Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. , 2004, Angewandte Chemie.

[5]  W. Saltzman,et al.  Biomaterials with hierarchically defined micro- and nanoscale structure. , 2004, Biomaterials.

[6]  S. Mann,et al.  Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods , 2004 .

[7]  M. Buggy,et al.  Bone cements and fillers: A review , 2003, Journal of materials science. Materials in medicine.

[8]  M. Vallet‐Regí,et al.  Bioactive sol-gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. , 2003, Biomaterials.

[9]  W. Douglas,et al.  Preparation of hydroxyapatite-gelatin nanocomposite. , 2003, Biomaterials.

[10]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[11]  Joanna Aizenberg,et al.  Direct Fabrication of Large Micropatterned Single Crystals , 2003, Science.

[12]  Masahiro Fujiwara,et al.  Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica , 2003, Nature.

[13]  Larry L Hench,et al.  Third-Generation Biomedical Materials , 2002, Science.

[14]  S. Ichinose,et al.  Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. , 2001, Biomaterials.

[15]  H. Sugimura,et al.  Ordered Mesoporous Silica Coatings That Induce Apatite Formation In Vitro , 2001 .

[16]  M. Vallet‐Regí,et al.  Biomimetic Apatite Deposition on Calcium Silicate Gel Glasses , 2001 .

[17]  L. Hench,et al.  Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. , 2001, Journal of biomedical materials research.

[18]  Hyunmin Kim,et al.  Mechanism of biomineralization of apatite on a sodium silicate glass: TEM-EDX study in vitro , 2001 .

[19]  S. Takagi,et al.  Diametral tensile strength and compressive strength of a calcium phosphate cement: effect of applied pressure. , 2000, Journal of biomedical materials research.

[20]  M. Vallet‐Regí,et al.  Evolution of porosity during in vitro hydroxycarbonate apatite growth in sol-gel glasses. , 2000, Journal of biomedical materials research.

[21]  M. Vallet‐Regí,et al.  New bioactive glass and changes in porosity during the growth of a carbonate hydroxyapatite layer on glass surfaces , 2000 .

[22]  Y. Ito,et al.  Surface micropatterning to regulate cell functions. , 1999, Biomaterials.

[23]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[24]  George M. Whitesides,et al.  Control of crystal nucleation by patterned self-assembled monolayers , 1999, Nature.

[25]  T. Peltola,et al.  Calcium phosphate formation on porous sol-gel-derived SiO2 and CaO-P2O5-SiO2 substrates in vitro. , 1999, Journal of biomedical materials research.

[26]  T. Peltola,et al.  Relation Between Aggregation and Heterogeneity of Obtained Structure in Sol-Gel Derived CaO-P2O5-SiO2 , 1998 .

[27]  E. Fernández,et al.  Improvement of the mechanical properties of new calcium phosphate bone cements in the CaHPO4-alpha-Ca3(PO4)2 system: compressive strength and microstructural development. , 1998, Journal of biomedical materials research.

[28]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[29]  K. Asaoka,et al.  Tissue response to fast-setting calcium phosphate cement in bone. , 1997, Journal of biomedical materials research.

[30]  A Curtis,et al.  Topographical control of cells. , 1997, Biomaterials.

[31]  S. Weiner,et al.  Design strategies in mineralized biological materials , 1997 .

[32]  K. Asaoka,et al.  Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. , 1995, Journal of biomedical materials research.

[33]  K. Asaoka,et al.  Non-decay type fast-setting calcium phosphate cement: composite with sodium alginate. , 1995, Biomaterials.

[34]  S. Radin,et al.  Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis , 1993 .

[35]  L. Chow Development of self-setting calcium phosphate cements , 1991 .

[36]  T. Yamamuro,et al.  Bioactive Bone Cement Based on CaO─SiO2─P2O5 Glass , 1991 .

[37]  C. Friedman,et al.  Hydroxyapatite cement. I. Basic chemistry and histologic properties. , 1991, Archives of otolaryngology--head & neck surgery.

[38]  W. E. Brown,et al.  Setting Reactions and Compressive Strengths of Calcium Phosphate Cements , 1990, Journal of dental research.

[39]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .