Colloidal CuInS2 Quantum Dots as Inorganic Hole-Transporting Material in Perovskite Solar Cells.

To develop novel hole-transporting materials (HTMs) is an important issue of perovskite solar cells (PSCs), especially favoring the stability improvement and the cost reduction. Herein, we use ternary quantum dots (QDs) as HTM in mesoporous TiO2/CH3NH3PbI3/HTM/Au solar cell, and modify the surface of CuInS2 QDs by cation exchange to improve the carrier transport. The device efficiency using CuInS2 QDs with a ZnS shell layer as HTM is 8.38% under AM 1.5, 100 mW cm(-2). The electrochemical impedance spectroscopy suggested that the significantly enhanced performance is mainly attributed to the reduced charge recombination between TiO2 and HTM. It paves a new pathway for the future development of cheap inorganic HTMs for the high efficiency PSCs.

[1]  Jiang Tang,et al.  PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells , 2015 .

[2]  Miaoyu Li,et al.  An all-solid-state perovskite-sensitized solar cell based on the dual function polyaniline as the sensitizer and p-type hole-transporting material , 2014 .

[3]  Jinli Yang,et al.  Compact layer free perovskite solar cells with 13.5% efficiency. , 2014, Journal of the American Chemical Society.

[4]  Kevin G. Stamplecoskie,et al.  Size-Dependent Photovoltaic Performance of CuInS2 Quantum Dot-Sensitized Solar Cells , 2014 .

[5]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[6]  Shahzad Ahmad,et al.  Elucidating Transport-Recombination Mechanisms in Perovskite Solar Cells by Small-Perturbation Techniques , 2014 .

[7]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[8]  Oscar Miguel,et al.  Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact , 2014 .

[9]  L. Etgar,et al.  A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic response , 2014 .

[10]  J. Bisquert,et al.  High-efficiency "green" quantum dot solar cells. , 2014, Journal of the American Chemical Society.

[11]  Peng Gao,et al.  Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells , 2014 .

[12]  Wenping Yin,et al.  Enhancing the Performance of Sensitized Solar Cells with PbS/CH3NH3PbI3 Core/Shell Quantum Dots. , 2014, The journal of physical chemistry letters.

[13]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[14]  Kun Zhang,et al.  Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells , 2014 .

[15]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[16]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[17]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[18]  J. Kolny-Olesiak,et al.  Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. , 2013, ACS applied materials & interfaces.

[19]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[20]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[21]  Zhipeng Huo,et al.  Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material. , 2013, Chemical communications.

[22]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[23]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[24]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[25]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[26]  Pralay K. Santra,et al.  CuInS2-Sensitized Quantum Dot Solar Cell. Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance. , 2013, The journal of physical chemistry letters.

[27]  Wenhui Zhou,et al.  CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization , 2012, Nanoscale Research Letters.

[28]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[29]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[30]  M. Ikegami,et al.  Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media , 2012 .

[31]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[32]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[33]  V. Klimov,et al.  Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. , 2011, Journal of the American Chemical Society.

[34]  E. Aydil,et al.  Hot-Electron Transfer from Semiconductor Nanocrystals , 2010, Science.

[35]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[36]  F. Fabregat‐Santiago,et al.  Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. , 2006, Nano letters.

[37]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[38]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[39]  Yadong Yin,et al.  Cation Exchange Reactions in Ionic Nanocrystals , 2004, Science.

[40]  R. Raffaelle,et al.  Synthesis and Characterization of Colloidal CuInS2 Nanoparticles from a Molecular Single-Source Precursor , 2004 .

[41]  Hans-Werner Schmidt,et al.  Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells , 2004 .

[42]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[43]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[44]  Takayuki Watanabe,et al.  Improvement of the Electrical Properties of Cu-Poor CuInS2 Thin Films by Sodium Incorporation , 1998 .

[45]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[46]  K. Chopra,et al.  Electrical and optical properties of single-phase CuInS2 films prepared using spray pyrolysis , 1985 .

[47]  D. Look,et al.  Electron and hole conductivity in CuInS2 , 1975 .

[48]  B. Tell,et al.  Electrical Properties, Optical Properties, and Band Structure of CuGaS 2 and CuInS 2 , 1971 .