The universal method for optimization of undulator tapering in FEL amplifiers

Technique of undulator tapering in the post-saturation regime is used at the existing x-ray FELs for increasing the radiation power. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. Diffraction effects essentially influence on the choice of the tapering strategy. Recent studies resulted in an general law of the undulator tapering for a seeded FEL amplifier. In this paper we extend these results for the case of the Self Amplified Spontaneous Emission (SASE) FEL.

[1]  N. Kroll,et al.  Free-electron lasers with variable parameter wigglers , 1980, IEEE Journal of Quantum Electronics.

[2]  Mikhail Yurkov,et al.  Nonlinear simulations of FEL amplifier with an axisymmetric electron beam , 1993 .

[3]  E. A. Schneidmiller,et al.  Optimization of a high efficiency free electron laser amplifier , 2014, 1410.5957.

[4]  Claudio Pellegrini,et al.  Collective instabilities and high-gain regime in a free electron laser , 1984 .

[5]  M. Yurkov,et al.  The Physics of Free Electron Lasers , 1999 .

[6]  E. A. Schneidmiller,et al.  On the possibility of constructing a high luminosity 2 × 5 GeV photon collider at SLC , 1994 .

[7]  W. M. Fawley,et al.  Wiggler taper optimization for free electron laser amplifiers with moderate space-charge effects , 1988 .

[8]  Wurtele,et al.  Optical guiding in a free-electron laser. , 1984, Physical review letters.

[9]  T. Ishikawa,et al.  A compact X-ray free-electron laser emitting in the sub-ångström region , 2012, Nature Photonics.

[10]  C. Pagani,et al.  DESIGN CONSIDERATIONS OF A MW-SCALE, HIGH-EFFICIENCY, INDUSTRIAL-USE, ULTRAVIOLET FEL AMPLIFIER , 2000 .

[11]  강희정,et al.  17 , 1995, The Hatak Witches.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Hopkins,et al.  High-efficiency extraction of microwave radiation from a tapered-wiggler free-electron laser. , 1986, Physical review letters.

[14]  M. V. Yurkov,et al.  A simple method for the determination of the structure of ultrashort relativistic electron bunches , 2004, physics/0407087.

[15]  Ryszard S. Romaniuk,et al.  Operation of a free-electron laser from the extreme ultraviolet to the water window , 2007 .

[16]  E. A. Schneidmiller,et al.  Potential of the FLASH free electron laser technology for the construction of a kW-scale light source for next-generation lithography , 2012 .

[17]  Zach DeVito,et al.  Opt , 2017 .

[18]  William M. Fawley,et al.  “Optical guiding” limits on extraction efficiencies of single-pass, tapered wiggler amplifiers , 1996 .

[19]  李幼升,et al.  Ph , 1989 .

[20]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[21]  Mikhail Yurkov,et al.  The physics of free electron lasers. An introduction , 1995 .

[22]  Mikhail Yurkov,et al.  FAST: a three-dimensional time-dependent FEL simulation code , 1999 .

[23]  William A. Barletta,et al.  Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet , 2012, Nature Photonics.

[24]  S. Reiche,et al.  Modeling and Multidimensional Optimization of a Tapered Free Electron Laser , 2012 .

[25]  A. DeMaria,et al.  Laser handbook , 1981, IEEE Journal of Quantum Electronics.

[26]  Mikhail Yurkov,et al.  The general solution of the eigenvalue problem for a high-gain FEL , 2001 .

[27]  Zhirong Huang,et al.  Tapered undulators for SASE FELs , 2002 .

[28]  E. O. Schulz-Dubois,et al.  Laser Handbook , 1972 .

[29]  X J Wang,et al.  Efficiency and spectrum enhancement in a tapered free-electron laser amplifier. , 2009, Physical review letters.