Nano‐Enabled Implantable Device for Glucose Monitoring

[1]  José A. Gallud,et al.  Using active and passive RFID technology to support indoor location-aware systems , 2008, IEEE Transactions on Consumer Electronics.

[2]  Steve Walsh,et al.  The Future Of Nanotechnologies , 2012 .

[3]  Gert Cauwenberghs,et al.  Power harvesting and telemetry in CMOS for implanted devices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Y. L. Young,et al.  Membrane thickness design of implantable bio-MEMS sensors for the in-situ monitoring of blood flow , 2007, Journal of materials science. Materials in medicine.

[5]  Jordi Colomer-Farrarons,et al.  A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices: Three-Electrodes Amperometric Biosensor Approach , 2011 .

[6]  M. Sawan,et al.  Wireless Smart Implants Dedicated to Multichannel Monitoring and Microstimulation , 2005, The IEEE/ACS International Conference on Pervasive Services.

[7]  Anthony Guiseppi-Elie,et al.  Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs) , 2009, Biomedical microdevices.

[8]  Josep Samitier,et al.  Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis , 2012 .

[9]  C.M. Zierhofer,et al.  Geometric approach for coupling enhancement of magnetically coupled coils , 1996, IEEE Transactions on Biomedical Engineering.

[10]  Keat Ghee Ong,et al.  Implantable Biosensors for Real-time Strain and Pressure Monitoring , 2008, Sensors.

[11]  Omowunmi A Sadik,et al.  Status of biomolecular recognition using electrochemical techniques. , 2009, Biosensors & bioelectronics.

[12]  Richard D. Beach,et al.  Towards a miniature implantable in vivo telemetry monitoring system dynamically configurable as a potentiostat or galvanostat for two- and three-electrode biosensors , 2005, IEEE Transactions on Instrumentation and Measurement.

[13]  H. Wolpert Use of Continuous Glucose Monitoring in the Detection and Prevention of Hypoglycemia , 2007, Journal of diabetes science and technology.

[14]  Pedro Lluís Miribel-Català,et al.  Power-Conditioning Circuitry for a Self-Powered System Based on Micro PZT Generators in a 0.13-$\mu\hbox{m}$ Low-Voltage Low-Power Technology , 2008, IEEE Transactions on Industrial Electronics.

[15]  Edwin Mansfield,et al.  Academic research and industrial innovation , 1991 .

[16]  Won-Yong Lee,et al.  Amperometric Glucose Biosensor Based on Glucose Oxidase Encapsulated in Carbon Nanotube–Titania–Nafion Composite Film on Platinized Glassy Carbon Electrode , 2007 .

[17]  Joseph Wang,et al.  In vivo glucose monitoring: towards 'Sense and Act' feedback-loop individualized medical systems. , 2008, Talanta.

[18]  A. Erdem,et al.  Single‐Walled Carbon Nanotubes Modified Graphite Electrodes for Electrochemical Monitoring of Nucleic Acids and Biomolecular Interactions , 2009 .

[19]  T. Lee,et al.  A Programmable 0.18-$\mu\hbox{m}$ CMOS Electrochemical Sensor Microarray for Biomolecular Detection , 2006, IEEE Sensors Journal.

[20]  A. Turner,et al.  Home blood glucose biosensors: a commercial perspective. , 2005, Biosensors & bioelectronics.