Controllability issues in flapping flight for biomimetic micro aerial vehicles (MAVs)

We explore controllability in flapping flight for micro aerial vehicles (MAVs), inch-size robots capable of autonomous flight. Differently from previous work, we focus on a MAV with very limited wing kinematics and simple input control schemes. In particular, in the first part we show how an MAV provided with a pair of wings, each with a single degree of freedom and passive rotation, can still ensure controllability. This is obtained by combining two ideas. The first idea is to parameterize wing trajectory based on biomimetic principles, i.e. principles that are directly inspired by observation of real insect flight. The second idea is to treat flapping flight within the framework of high frequency control and to apply averaging theory arguments in order to prove controllability. The results obtained set flapping flight as a compelling example of high frequency control present in nature, and shed light on some of the reasons of superior maneuverability observed in flapping flight. Then, in the second part we show that controllability is still guaranteed even when the wing-thorax dynamics is included and the electromechanical structure is driven by a pulse width modulation (PWM) scheme where only its amplitude, period and duty cycle are controllable on a wingbeat-by-wingbeat basis. However, in this case our modeling clearly shows some tradeoffs between controllability and lift generation efficiency, which seem consistent with observations in real insect flight.

[1]  Ronald S. Fearing,et al.  Wing transmission for a micromechanical flying insect , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  M. Dickinson,et al.  The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. , 2002, The Journal of experimental biology.

[3]  M. Dickinson,et al.  The control of flight force by a flapping wing: lift and drag production. , 2001, The Journal of experimental biology.

[4]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[5]  Ronald S. Fearing,et al.  Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[6]  Robert J. Wood,et al.  Towards flapping wing control for a micromechanical flying insect , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[7]  Joel W. Burdick,et al.  Nonlinear control methods for planar carangiform robot fish locomotion , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[8]  H. Sussmann,et al.  Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[9]  S. Shankar Sastry,et al.  A flight control system for aerial robots: algorithms and experiments , 2002 .

[10]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[11]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[12]  D. Campolo,et al.  Efficient charge recovery method for driving piezoelectric actuators with quasi-square waves , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  S. Shankar Sastry,et al.  Model identification and attitude control for a micromechanical flying insect including thorax and sensor models , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[14]  Robert J. Wood,et al.  Dynamically tuned design of the MFI thorax , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).