Numerical analysis of JET discharges with the European Transport Simulator

The 'European Transport Simulator' (ETS) (Coster et al 2010 IEEE Trans. Plasma Sci. 38 2085-92, Kalupin et al 2011 Proc. 38th EPS Conf. on Plasma Physics (Strasbourg, France, 2011) vol 35G (ECA) P. 4.111) is the new modular package for 1D discharge evolution developed within the EFDA Integrated Tokamak Modelling (ITM) Task Force. It consists of precompiled physics modules combined into a workflow through standardized input/output data structures. Ultimately, the ETS will allow for an entire discharge simulation from the start up until the current termination phase, including controllers and sub-systems. The paper presents the current status of the ETS towards this ultimate goal. It discusses the design of the workflow, the validation and verification of its components on the example of impurity solver and demonstrates a proof-of-principles coupling of a local gyrofluid model for turbulent transport to the ETS. It also presents the first results on the application of the ETS to JET tokamak discharges with the ITER like wall. It studies the correlations of the radiation from impurity to the choice of the sources and transport coefficients.

[1]  O. Sauter,et al.  Erratum: “Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime” [Phys. Plasmas 6, 2834 (1999)] , 2002 .

[2]  B. Braams,et al.  Plasma Edge Physics with B2‐Eirene , 2006 .

[3]  Daniela Farina,et al.  Benchmarking of electron cyclotron heating and current drive codes on ITER scenarios within the European Integrated Tokamak Modelling framework , 2012 .

[4]  G. V. Pereverzew,et al.  ASTRA. An Automatic System for Transport Analysis in a Tokamak. , 1991 .

[5]  W. Zwingmann,et al.  Integrated tokamak modelling taskforce: Validation of the equilibrium reconstruction from experimental data , 2008 .

[6]  Bruce D. Scott,et al.  Free-energy conservation in local gyrofluid models , 2005 .

[7]  Mikhail Z. Tokar,et al.  Numerical solution of transport equations for plasmas with transport barriers , 2006, Comput. Phys. Commun..

[8]  Michael Barnes,et al.  Resolving velocity space dynamics in continuum gyrokinetics , 2009, 0907.4413.

[9]  Neil Pomphrey,et al.  TSC simulation of Ohmic discharges in TFTR , 1993 .

[10]  W. Houlberg,et al.  Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio , 1997 .

[11]  Jet Efda Contributors,et al.  The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results , 2014 .

[12]  Douglass E. Post,et al.  Steady-state radiative cooling rates for low-density, high-temperature plasmas , 1977 .

[13]  F. Imbeaux,et al.  The European Transport Solver , 2010, IEEE Transactions on Plasma Science.

[14]  J. Weiland,et al.  Collective modes in inhomogeneous plasma : Kinetic and advanced fluid theory , 2000 .

[15]  R. Neu,et al.  Integrated Modelling of ASDEX Upgrade Nitrogen Seeded Discharges , 2012 .

[16]  G. V. Shpatakovskaya Semiclassical model of the structure of matter , 2012 .

[17]  E. Joffrin,et al.  The CRONOS suite of codes for integrated tokamak modelling , 2010 .

[18]  D. Uhrlandt,et al.  Transport mechanisms of metastable and resonance atoms in a gas discharge plasma , 2013 .

[19]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[20]  J. Contributors,et al.  Determination of metal impurity density,Delta Z(eff) and dilution on JET by VUV emission spectroscopy , 2011 .

[21]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .