On the Complexity of Bounded View Propagation for Conjunctive Queries

The view propagation problem is a class of view update problem in relational databases  <xref ref-type="bibr" rid="ref7">[7]</xref> , involving deletion and insertion propagations. Given source database <inline-formula><tex-math notation="LaTeX">$D$ </tex-math><alternatives><inline-graphic xlink:href="cai-ieq1-2758361.gif"/></alternatives></inline-formula>, conjunctive query <inline-formula><tex-math notation="LaTeX">$Q$</tex-math><alternatives> <inline-graphic xlink:href="cai-ieq2-2758361.gif"/></alternatives></inline-formula>, view <inline-formula> <tex-math notation="LaTeX">$V$</tex-math><alternatives><inline-graphic xlink:href="cai-ieq3-2758361.gif"/> </alternatives></inline-formula> generated by query <inline-formula><tex-math notation="LaTeX">$Q(D)$</tex-math> <alternatives><inline-graphic xlink:href="cai-ieq4-2758361.gif"/></alternatives></inline-formula> and a deletion (insertion) on view <inline-formula><tex-math notation="LaTeX">$\Delta V$</tex-math><alternatives> <inline-graphic xlink:href="cai-ieq5-2758361.gif"/></alternatives></inline-formula>, deletion (insertion) propagation is to find a side effect free update <inline-formula><tex-math notation="LaTeX">$\Delta D$</tex-math><alternatives> <inline-graphic xlink:href="cai-ieq6-2758361.gif"/></alternatives></inline-formula> on <inline-formula> <tex-math notation="LaTeX">$D$</tex-math><alternatives><inline-graphic xlink:href="cai-ieq7-2758361.gif"/> </alternatives></inline-formula> such that the deletion (insertion) of <inline-formula><tex-math notation="LaTeX"> $\Delta D$</tex-math><alternatives><inline-graphic xlink:href="cai-ieq8-2758361.gif"/></alternatives></inline-formula> from (into) <inline-formula><tex-math notation="LaTeX">$D$</tex-math><alternatives> <inline-graphic xlink:href="cai-ieq9-2758361.gif"/></alternatives></inline-formula> will delete (insert) the intentional ones <inline-formula><tex-math notation="LaTeX">$\Delta V$</tex-math><alternatives> <inline-graphic xlink:href="cai-ieq10-2758361.gif"/></alternatives></inline-formula> without resulting in the deletion (insertion) of additional tuples from (into) the view. Generally, such a deletion (insertion) is side effect free. The related data management applications include query result explanation, data debugging, and anonymizing datasets, which rely on understanding how interventions in a database affect the output of a query. View propagation is a natural and typical way to define such interventions, which seems to be well-studied. However, in general, the candidate update on a source database is picked up aimlessly in advance, making the updated database to be very distant from the original one no matter whether it is the maximum one. In this paper, we formally define the bounded view propagation problem, where candidate update <inline-formula><tex-math notation="LaTeX">$\Delta D$</tex-math><alternatives> <inline-graphic xlink:href="cai-ieq11-2758361.gif"/></alternatives></inline-formula> is bounded as a subset of <italic> potential</italic> <inline-formula><tex-math notation="LaTeX">$C$</tex-math><alternatives> <inline-graphic xlink:href="cai-ieq12-2758361.gif"/></alternatives></inline-formula> which is a fixed small tuple set of <inline-formula><tex-math notation="LaTeX">$D$</tex-math><alternatives> <inline-graphic xlink:href="cai-ieq13-2758361.gif"/></alternatives></inline-formula>. We study the complexity of this problem for conjunctive queries, and make contributions to the previous results of the problems of side-effect free deletion propagation. Specifically, our bounded view propagation problem decreases computational complexity regardless of conjunctive query structure. We show the fixed <italic>potential</italic> is actually a dichotomy for both deletion and insertion propagations, and figure out the results on combined complexity which is neglected previously. Based on our results, for view propagation, we map out a complete picture of the computational complexity hierarchy for conjunctive queries on both data and combined complexities. Moreover, this bounded version is an update forbidden case of view propagation, and our results can be applied to it.

[1]  Benny Kimelfeld,et al.  A dichotomy in the complexity of deletion propagation with functional dependencies , 2012, PODS '12.

[2]  Dan Suciu,et al.  A formal approach to finding explanations for database queries , 2014, SIGMOD Conference.

[3]  Quoc Trung Tran,et al.  How to ConQueR why-not questions , 2010, SIGMOD Conference.

[4]  Cong Yu,et al.  MapRat: Meaningful Explanation, Interactive Exploration and Geo-Visualization of Collaborative Ratings , 2012, Proc. VLDB Endow..

[5]  Jan Vondrák,et al.  Maximizing conjunctive views in deletion propagation , 2012, TODS.

[6]  Benjamin C. Pierce,et al.  Relational lenses: a language for updatable views , 2006, PODS '06.

[7]  Dan Suciu,et al.  The Complexity of Causality and Responsibility for Query Answers and non-Answers , 2010, Proc. VLDB Endow..

[8]  Tianyu Wo,et al.  Bounded Conjunctive Queries , 2014, Proc. VLDB Endow..

[9]  Samuel Madden,et al.  Scorpion: Explaining Away Outliers in Aggregate Queries , 2013, Proc. VLDB Endow..

[10]  Joseph Y. Halpern,et al.  Responsibility and Blame: A Structural-Model Approach , 2003, IJCAI.

[11]  Jeffrey F. Naughton,et al.  On the provenance of non-answers to queries over extracted data , 2008, Proc. VLDB Endow..

[12]  Daniel Fabbri,et al.  Explanation-Based Auditing , 2011, Proc. VLDB Endow..

[13]  Neil Immerman,et al.  The Complexity of Resilience and Responsibility for Self-Join-Free Conjunctive Queries , 2015, Proc. VLDB Endow..

[14]  Adriane Chapman,et al.  Why Not? , 1965, SIGMOD Conference.

[15]  Nicolas Spyratos,et al.  Update semantics of relational views , 1981, TODS.

[16]  Dimitrios Gunopulos,et al.  Efficient and effective explanation of change in hierarchical summaries , 2007, KDD '07.

[17]  David P. Woodruff,et al.  Multi-Tuple Deletion Propagation: Approximations and Complexity , 2013, Proc. VLDB Endow..

[18]  Suman Nath,et al.  Tracing data errors with view-conditioned causality , 2011, SIGMOD '11.

[19]  Wang Chiew Tan,et al.  Artemis: A System for Analyzing Missing Answers , 2009, Proc. VLDB Endow..

[20]  Lane A. Hemaspaandra,et al.  SIGACT news complexity theory comun 37 , 2002, SIGA.

[21]  Ronald Fagin,et al.  On the semantics of updates in databases , 1983, PODS.

[22]  Melanie Herschel,et al.  Explaining missing answers to SPJUA queries , 2010, Proc. VLDB Endow..

[23]  M. Schaefer,et al.  Completeness in the Polynomial-Time Hierarchy A Compendium ∗ , 2008 .

[24]  Klaus W. Wagner More Complicated Questions About Maxima and Minima, and Some Closures of NP , 1987, Theor. Comput. Sci..

[25]  Val Tannen,et al.  Provenance semirings , 2007, PODS.

[26]  Gottfried Vossen,et al.  On the computation of relational view complements , 2003, TODS.

[27]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[28]  Sanjeev Khanna,et al.  Edinburgh Research Explorer On the Propagation of Deletions and Annotations through Views , 2013 .

[29]  Jianzhong Li,et al.  On the Complexity of View Update Analysis and Its Application to Annotation Propagation , 2012, IEEE Transactions on Knowledge and Data Engineering.

[30]  Johannes Gehrke,et al.  Explainable security for relational databases , 2014, SIGMOD Conference.

[31]  James Cheney,et al.  Provenance in Databases: Why, How, and Where , 2009, Found. Trends Databases.

[32]  Moshe Y. Vardi The complexity of relational query languages (Extended Abstract) , 1982, STOC '82.

[33]  V. Vianu,et al.  Edinburgh Why and Where: A Characterization of Data Provenance , 2017 .

[34]  Umeshwar Dayal,et al.  On the correct translation of update operations on relational views , 1982, TODS.

[35]  Jennifer Widom,et al.  Tracing the lineage of view data in a warehousing environment , 2000, TODS.

[36]  Arthur M. Keller,et al.  Algorithms for translating view updates to database updates for views involving selections, projections, and joins , 1985, PODS.

[37]  Dan Suciu,et al.  PerfXplain: Debugging MapReduce Job Performance , 2012, Proc. VLDB Endow..

[38]  Wenfei Fan,et al.  Annotation propagation revisited for key preserving views , 2006, CIKM '06.