Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil.

[1]  Guangrui Liu Development of low‐temperature properties on biodiesel fuel: a review , 2015 .

[2]  M. E. Farías,et al.  Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism , 2014, Extremophiles.

[3]  A. Steinbüchel,et al.  Acyltransferases in Bacteria , 2013, Microbiology and Molecular Reviews.

[4]  A. Steinbüchel,et al.  Random mutagenesis of atfA and screening for Acinetobacter baylyi mutants with an altered lipid accumulation , 2013 .

[5]  M. E. Farías,et al.  Lipid storage in high-altitude Andean Lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp. A5, a UV-resistant actinobacterium , 2013, Extremophiles.

[6]  T. G. Villa,et al.  Oily yeasts as oleaginous cell factories , 2011, Applied Microbiology and Biotechnology.

[7]  A. Ragauskas,et al.  Lipids from heterotrophic microbes: advances in metabolism research. , 2011, Trends in biotechnology.

[8]  R. Seviour,et al.  Systematics of Members of the Genus Rhodococcus (Zopf 1891) Emend Goodfellow et al. 1998 , 2010 .

[9]  Alexander Steinbüchel,et al.  Fatty acid alkyl esters: perspectives for production of alternative biofuels , 2010, Applied Microbiology and Biotechnology.

[10]  Andreas Schirmer,et al.  New microbial fuels: a biotech perspective. , 2009, Current opinion in microbiology.

[11]  A. Steinbüchel,et al.  Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein , 2009, Applied Microbiology and Biotechnology.

[12]  Adrián F. Alvarez,et al.  Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism , 2008, BMC Genomics.

[13]  O. Singh,et al.  Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives , 2008, Journal of Industrial Microbiology & Biotechnology.

[14]  Ana Arabolaza,et al.  Multiple Pathways for Triacylglycerol Biosynthesis in Streptomyces coelicolor , 2008, Applied and Environmental Microbiology.

[15]  James K Fredrickson,et al.  Protein oxidation: key to bacterial desiccation resistance? , 2008, The ISME Journal.

[16]  T. M. Keenan,et al.  Polyhydroxyalkanoate copolymers from forest biomass , 2006, Journal of Industrial Microbiology and Biotechnology.

[17]  A. Steinbüchel,et al.  Mechanism of lipid‐body formation in prokaryotes: how bacteria fatten up , 2004, Molecular microbiology.

[18]  Jörg U. Ganzhorn,et al.  Hibernation in the tropics: lessons from a primate , 2005, Journal of Comparative Physiology B.

[19]  A. Steinbüchel,et al.  Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. , 2004, FEMS microbiology ecology.

[20]  H. Schlegel,et al.  Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen , 2004, Archiv für Mikrobiologie.

[21]  A. Steinbüchel,et al.  Triacylglycerols in prokaryotic microorganisms , 2002, Applied Microbiology and Biotechnology.

[22]  M. Potts Desiccation tolerance: a simple process? , 2001, Trends in microbiology.

[23]  M. Potts,et al.  Chapter 13 – Life Without Water: Responses of Prokaryotes to Desiccation , 2000 .

[24]  A. Steinbüchel,et al.  Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. , 2000, Microbiology.

[25]  A. Steinbüchel,et al.  A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds , 1999, Archives of Microbiology.

[26]  A. Steinbüchel,et al.  Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol , 1997 .

[27]  A. Steinbüchel,et al.  Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630 , 1996, Archives of Microbiology.

[28]  Lawrence A. Johnson,et al.  Use of branched-chain esters to reduce the crystallization temperature of biodiesel , 1995 .

[29]  N. M. Packter,et al.  Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. , 1994, Microbiology.

[30]  A. Steinbüchel,et al.  Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads , 1990, Applied and environmental microbiology.

[31]  C. Frank Diet selection by a heteromyid rodent: role of net metabolic water production , 1988 .

[32]  R. Gross,et al.  Pseudomonas oleovorans as a Source of Poly(β-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters , 1988, Applied and environmental microbiology.

[33]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[34]  H. Wahner,et al.  Metabolism of bears before, during, and after winter sleep. , 1973, The American journal of physiology.

[35]  Knut Schmidt-Nielsen,et al.  How Animals Work , 1972 .

[36]  L. Boniforti,et al.  THE COMPONENT FATTY ACIDS OF LIPIDS FROM SOME STREPTOMYCES SPP. , 1965, The Biochemical journal.