S-packing chromatic vertex-critical graphs

Abstract For a non-decreasing sequence of positive integers S = ( s 1 , s 2 , … ) , the S -packing chromatic number χ S ( G ) of G is the smallest integer k such that the vertex set of G can be partitioned into sets X i , i ∈ [ k ] , where vertices in X i are pairwise at distance greater than s i . In this paper we introduce S -packing chromatic vertex-critical graphs, χ S -critical for short, as the graphs in which χ S ( G − u ) χ S ( G ) for every u ∈ V ( G ) . This extends the earlier concept of the packing chromatic vertex-critical graphs. We show that if G is χ S -critical, then the set { χ S ( G ) − χ S ( G − u ) : u ∈ V ( G ) } can be almost arbitrary. If G is χ S -critical and χ S ( G ) = k ( k ∈ N ), then G is called k - χ S -critical. We characterize 3- χ S -critical graphs and partially characterize 4- χ S -critical graphs when s 1 > 1 . We also deal with k - χ S -criticality of trees and caterpillars.

[1]  W. Goddard,et al.  The S-packing chromatic number of a graph , 2012, Discuss. Math. Graph Theory.

[2]  Sandi Klavzar,et al.  On the packing chromatic number of Cartesian products, hexagonal lattice, and trees , 2007, Electron. Notes Discret. Math..

[3]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[4]  Olivier Togni,et al.  S-packing colorings of cubic graphs , 2016, Discret. Math..

[6]  Olivier Togni,et al.  Subdivision into i-packings and S-packing chromatic number of some lattices , 2015, Ars Math. Contemp..

[7]  Wayne Goddard,et al.  A note on S-packing colorings of lattices , 2014, Discret. Appl. Math..

[8]  Nicolas Gastineau,et al.  Dichotomies properties on computational complexity of S-packing coloring problems , 2013, Discret. Math..

[9]  Wayne Goddard,et al.  Braodcast Chromatic Numbers of Graphs , 2008, Ars Comb..

[10]  Sandi Klavžar,et al.  Packing chromatic number, $$\mathbf (1, 1, 2, 2) $$(1,1,2,2)-colorings, and characterizing the Petersen graph , 2017 .

[11]  Hamid Maarouf,et al.  Gröbner Bases Techniques for an $S$-Packing $k$-Coloring of a Graph , 2017, Electron. J. Comb..

[12]  Alexandr V. Kostochka,et al.  Packing Chromatic Number of Subdivisions of Cubic Graphs , 2019, Graphs Comb..

[13]  Olivier Togni,et al.  On S-packing edge-colorings of cubic graphs , 2019, Discret. Appl. Math..

[14]  Sandi Klavzar,et al.  Packing chromatic vertex-critical graphs , 2019, Discret. Math. Theor. Comput. Sci..

[15]  Aleksander Vesel,et al.  Modeling the packing coloring problem of graphs , 2015 .

[16]  Douglas F. Rall,et al.  Packing chromatic number, $(1,1,2,2)$-colorings, and characterizing the Petersen graph , 2016 .

[17]  Stanislav Jendrol',et al.  Facial packing vertex-coloring of subdivided plane graphs , 2019, Discret. Appl. Math..

[18]  Barnaby Martin,et al.  The packing chromatic number of the infinite square lattice is between 13 and 15 , 2017, Discret. Appl. Math..

[19]  Danilo Korze,et al.  Packing coloring of generalized Sierpinski graphs , 2019, Discret. Math. Theor. Comput. Sci..

[20]  Jasmina Ferme,et al.  Graphs that are Critical for the Packing Chromatic Number , 2019, Discuss. Math. Graph Theory.

[21]  Alexandr V. Kostochka,et al.  Packing chromatic number of cubic graphs , 2018, Discret. Math..

[22]  Olivier Togni,et al.  On packing chromatic number of subcubic outerplanar graphs , 2019, Discret. Appl. Math..

[23]  Sandi Klavžar,et al.  Packing chromatic number versus chromatic and clique number , 2017, 1707.04910.