Finding the integer order systems for fractional order systems via fractional operational matrices

In this paper, a new innovative method for approximating fractional order system by an integer order model is proposed. The Riemann-Liouville's integral is adopted for fractional order operations via block pulse expansion and a new SID (system identification) matrix can be derived to identify the coefficients of an integer order transfer function to approximate the given fractional order system. In comparison with previous approach via PSO (Particle Swarm Optimization) method, this new approach provides a more reasonable approach and yield better results. Several examples are illustrated to validate our better results.

[1]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[2]  Wang Chi-Hsu Generalized block-pulse operational matrices and their applications to operational calculus , 1982 .

[3]  Amit Konar,et al.  Approximation of a Fractional Order System by an Integer Order Model Using Particle Swarm Optimization Technique , 2008, ArXiv.

[4]  G. Mittag-Leffler,et al.  Sur la représentation analytique d’une branche uniforme d’une fonction monogène , 1901 .

[5]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[6]  I. Podlubny Fractional differential equations , 1998 .

[7]  R. Marleau,et al.  System identification via generalized block pulse operational matrices , 1985 .

[8]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[9]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[10]  George E. P. Box,et al.  Time Series Analysis: Box/Time Series Analysis , 2008 .

[11]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[12]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[13]  Wang Chi-Hsu On the Generalization of Block Pulse Operational Matrices for Fractional and Operational Calculus , 1983 .

[14]  G. Mittag-Leffler Sur la représentation analytique d’une branche uniforme d’une fonction monogène , 1900 .

[15]  S. Rogosin,et al.  Mittag-leeer Type Functions: Notes on Growth Properties and Distribution of Zeros , 1997 .