Lattice calculation of the $\pi^0$, $\eta$ and $\eta^{\prime}$ transition form factors and the hadronic light-by-light contribution to the muon $g-2$

In this paper we present a first ab-initio calculation of the $\pi^0$, $\eta$ and $\eta^{\prime}$ transition form factors performed with physical light-quark masses. We provide a complete parametrization of the form factors that includes both single and double-virtual kinematics. Our results are compared with experimental measurements of the form factors in the space-like region and with the measured two-photon decay widths. In a second step, our parametrizations of the transition form factors are used to compute the dominant pseudoscalar-pole contributions to the hadronic light-by-light scattering in the muon $g-2$. Our final result reads $a_{\mu}^{\rm hlbl, ps-pole} = (85.1 \pm 5.2) \times 10^{-11}$. Although the pion-pole is dominant, we confirm that, together, the $\eta$ and $\eta^{\prime}$ provide roughly half of its contribution.

[1]  M. Hayakawa,et al.  Hadronic light-by-light contribution to the muon anomaly from lattice QCD with infinite volume QED at physical pion mass , 2023, 2304.04423.

[2]  Bradley Dirks,et al.  The minimal exponent and k-rationality for local complete intersections , 2022, Journal de l’École polytechnique — Mathématiques.

[3]  R. Sommer,et al.  On fits to correlated and auto-correlated data , 2022, Comput. Phys. Commun..

[4]  C. Aubin,et al.  Muon anomalous magnetic moment with staggered fermions: Is the lattice spacing small enough? , 2022, Physical Review D.

[5]  H. Meyer,et al.  The charm-quark contribution to light-by-light scattering in the muon ( g - 2 ) from lattice QCD. , 2022, The European physical journal. C, Particles and fields.

[6]  S. Simula,et al.  Window contributions to the muon hadronic vacuum polarization with twisted-mass fermions , 2021, Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021).

[7]  Xu Feng,et al.  First-principle calculation of the ηc→2γ decay width from lattice QCD. , 2021, Science bulletin.

[8]  S. C. Kim,et al.  Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. , 2021, Physical review letters.

[9]  H. Meyer,et al.  Hadronic light-by-light contribution to (g-2)μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)_\mu $$\end{documen , 2021, The European Physical Journal C.

[10]  G. Colangelo,et al.  Constraints on the two-pion contribution to hadronic vacuum polarization , 2020, Physics Letters B.

[11]  W. Marciano,et al.  Muon g−2 and Δα connection , 2020 .

[12]  H. Meyer,et al.  Hadronic light-by-light contribution to (g-2)μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)_\mu $$\end{documen , 2020, The European Physical Journal C.

[13]  C. DeTar,et al.  The anomalous magnetic moment of the muon in the Standard Model , 2020, Physics Reports.

[14]  M. Hoferichter,et al.  Hadronic Vacuum Polarization: (g-2)_{μ} versus Global Electroweak Fits. , 2020, Physical review letters.

[15]  C. Lehner,et al.  Consistency of hadronic vacuum polarization between lattice QCD and the R ratio , 2020, Physical Review D.

[16]  T. Lippert,et al.  Leading hadronic contribution to the muon magnetic moment from lattice QCD , 2020, Nature.

[17]  M. Hayakawa,et al.  Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment from Lattice QCD. , 2019, Physical review letters.

[18]  S. Durr,et al.  Details of a staggered fermion data analysis , 2019, 1910.11046.

[19]  A. Bashir,et al.  Contribution of neutral pseudoscalar mesons to aμHLbL within a Schwinger-Dyson equations approach to QCD , 2019, Physical Review D.

[20]  S. Simula,et al.  Lepton anomalous magnetic moments in Lattice QCD+QED , 2019, 1910.03874.

[21]  M. Hoferichter,et al.  Three-pion contribution to hadronic vacuum polarization , 2019, Journal of High Energy Physics.

[22]  C. Jung,et al.  Light quark vacuum polarization at the physical point and contribution to the muon g−2 , 2019, Physical Review D.

[23]  H. Wittig,et al.  Leading hadronic contribution to (g−2)μ from lattice QCD with Nf=2+1 flavors of O(a) improved Wilson quarks , 2019, Physical Review D.

[24]  Richard Williams,et al.  Single pseudoscalar meson pole and pion box contributions to the anomalous magnetic moment of the muon , 2019, Physics Letters B.

[25]  S. Schaefer,et al.  Frequency-splitting estimators of single-propagator traces , 2019, Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019).

[26]  A. Nyffeler,et al.  Lattice calculation of the pion transition form factor with Nf=2+1 Wilson quarks , 2019, Physical Review D.

[27]  E. Shintani,et al.  Hadronic vacuum polarization contribution to the muon g−2 with ( 2+1 )-flavor lattice QCD on a larger than (10  fm)4 lattice at the physical point , 2019, Physical Review D.

[28]  V. Lubicz,et al.  Electromagnetic and strong isospin-breaking corrections to the muon g−2 from lattice QCD+QED , 2019, Physical Review D.

[29]  S. Wada,et al.  A new approach for measuring the muon anomalous magnetic moment and electric dipole moment , 2019, Progress of Theoretical and Experimental Physics.

[30]  Xu Feng,et al.  QED self-energies from lattice QCD without power-law finite-volume errors , 2018, Physical Review D.

[31]  G. Colangelo,et al.  Two-pion contribution to hadronic vacuum polarization , 2018, Journal of High Energy Physics.

[32]  M. Hoferichter,et al.  Dispersion relation for hadronic light-by-light scattering: pion pole , 2018, Journal of High Energy Physics.

[33]  M. Hoferichter,et al.  Pion-Pole Contribution to Hadronic Light-By-Light Scattering in the Anomalous Magnetic Moment of the Muon. , 2018, Physical review letters.

[34]  Fermilab Lattice,et al.  Strong-Isospin-Breaking Correction to the Muon Anomalous Magnetic Moment from Lattice QCD at the Physical Point. , 2018 .

[35]  P. Boyle,et al.  Calculation of the Hadronic Vacuum Polarization Contribution to the Muon Anomalous Magnetic Moment. , 2018, Physical review letters.

[36]  H. Wittig,et al.  Hadronic light-by-light scattering amplitudes from lattice QCD versus dispersive sum rules , 2017, Physical Review D.

[37]  Z. Fodor,et al.  Hadronic Vacuum Polarization Contribution to the Anomalous Magnetic Moments of Leptons from First Principles. , 2017, Physical review letters.

[38]  C. DeTar,et al.  Strong-Isospin-Breaking Correction to the Muon Anomalous Magnetic Moment from Lattice QCD at the Physical Point. , 2017, Physical review letters.

[39]  A. Nyffeler,et al.  The hadronic vacuum polarization contribution to the muon g − 2 from lattice QCD , 2017, Journal of High Energy Physics.

[40]  P. Masjuan,et al.  Pseudoscalar-pole contribution to the $(g_{\mu}-2)$: a rational approach , 2017, 1701.05829.

[41]  M. Hayakawa,et al.  Connected and Leading Disconnected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment with a Physical Pion Mass. , 2016, Physical review letters.

[42]  G. Colangelo,et al.  Dispersion relation for hadronic light-by-light scattering: two-pion contributions , 2016, 1702.07347.

[43]  A. Nyffeler Precision of a data-driven estimate of hadronic light-by-light scattering in the muon $g-2$: Pseudoscalar-pole contribution , 2016, 1602.03398.

[44]  A. Nyffeler,et al.  Direct calculation of hadronic light-by-light scattering , 2015, 1510.08384.

[45]  M. Hayakawa,et al.  Lattice Calculation of Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment , 2015, 1510.07100.

[46]  M. Hoferichter,et al.  Dispersion relation for hadronic light-by-light scattering: theoretical foundations , 2015, Journal of High Energy Physics.

[47]  H. Meyer,et al.  Lattice QCD Calculation of Hadronic Light-by-Light Scattering. , 2015, Physical review letters.

[48]  Peter Stoffer,et al.  Dispersion relation for hadronic light-by-light scattering: theoretical foundations , 2015, 1506.01386.

[49]  A. Vasiliev,et al.  Precision measurement of the neutral pion lifetime , 2015, Science.

[50]  F. Azfar,et al.  Muon (g-2) Technical Design Report , 2015, 1501.06858.

[51]  A. Francis,et al.  The leading disconnected contribution to the anomalous magnetic moment of the muon , 2014, 1411.7592.

[52]  Peter Stoffer,et al.  Towards a data-driven analysis of hadronic light-by-light scattering , 2014, 1408.2517.

[53]  M. Hayakawa,et al.  Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD. , 2014, Physical review letters.

[54]  G. Colangelo,et al.  Dispersive approach to hadronic light-by-light scattering , 2014, 1402.7081.

[55]  C. Jung,et al.  Covariant approximation averaging , 2014, 1402.0244.

[56]  F. Happacher,et al.  Measurement of η meson production in γγ interactions and Γ(η → γγ) with the KLOE detector , 2013 .

[57]  S. Uehara Measurement of γγ* → π0 transition form factor at Belle , 2012 .

[58]  Taku Izubuchi,et al.  New class of variance-reduction techniques using lattice symmetries , 2012, 1208.4349.

[59]  T. Kaneko,et al.  Two-photon decay of the neutral pion in lattice QCD. , 2012, Physical review letters.

[60]  T. E. Rodrigues,et al.  New Measurement of the π0 radiative decay width. , 2010, Physical review letters.

[61]  Gunnar S. Bali,et al.  Effective noise reduction techniques for disconnected loops in Lattice QCD , 2009, Comput. Phys. Commun..

[62]  Tereza Mendes,et al.  On the generalized eigenvalue method for energies and matrix elements in lattice field theory , 2009, 0902.1265.

[63]  A. Irving,et al.  Methods for pseudoscalar flavor-singlet mesons with staggered fermions , 2007, 0709.4224.

[64]  J. Shigemitsu,et al.  Highly improved staggered quarks on the lattice with applications to charm physics , 2006, hep-lat/0610092.

[65]  T. DeGrand,et al.  Improving meson two-point functions by low-mode averaging , 2004, hep-lat/0409056.

[66]  M. Laine,et al.  Low-energy couplings of QCD from current correlators near the chiral limit , 2004, hep-lat/0402002.

[67]  E. Sichtermann,et al.  Muon g-2 , 2003, hep-ex/0309008.

[68]  A. Nyffeler,et al.  Hadronic light-by-light scattering contribution to the muon g-2 on the lattice , 2018, 1801.04238.

[69]  C. Jung,et al.  Photon structure functions from quenched lattice QCD , 2001, hep-lat/0103007.

[70]  C. Jung,et al.  Studying hadronic structure of the photon in lattice QCD. , 2001, Physical review letters.

[71]  G. Lepage Flavor symmetry restoration and Symanzik improvement for staggered quarks , 1998, hep-lat/9809157.

[72]  P. Lepage Perturbative improvement for lattice QCD: An update , 1997, hep-lat/9707026.

[73]  C. collaboration,et al.  Measurements of the meson-photon transition form factors of light pseudoscalar mesons at large momentum transfer , 1997, Physical Review D.

[74]  Alan D. Martin,et al.  Review of Particle Physics , 2000, Physical Review D.

[75]  B. Grinstein,et al.  Model-independent determinations of B → Dlν, D∗lν form factors , 1996 .

[76]  R. Altmeyer,et al.  The Hadron spectrum in QCD with dynamical staggered fermions , 1993 .

[77]  M. Feindt,et al.  A measurement of the π0, η and η′ electromagnetic form factors , 1990 .

[78]  M. Cavalli-Sforza,et al.  Formation of the pseudoscalars 0, and in the reaction , 1988 .

[79]  J. Baines,et al.  A measurement of the η radiative width Γη→γγ , 1985 .

[80]  A. Vainshtein,et al.  Use and Misuse of QCD Sum Rules, Factorization and Related Topics , 1984 .

[81]  S. Brodsky,et al.  Large-angle two-photon exclusive channels in quantum chromodynamics , 1981 .

[82]  S. Brodsky,et al.  Exclusive Processes in Perturbative Quantum Chromodynamics , 1980 .

[83]  S. Brodsky,et al.  Exclusive processes in quantum chromodynamics: Evolution equations for hadronic wavefunctions and the form factors of mesons , 1979 .

[84]  B. Gittelman,et al.  Radiative width of the eta meson , 1974 .

[85]  B. Malaescu,et al.  Impact of correlations between aμ and αQED on the EW fit , 2021 .

[86]  M. Davier,et al.  A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α( m 2 Z ) , 2019 .

[87]  T. Teubner,et al.  The g − 2 of charged leptons , α ( M 2 Z ) and the hyperfine splitting of muonium , 2019 .

[88]  M. Davier,et al.  Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α ( m 2 Z ) using newest hadronic cross-section data , 2018 .

[89]  T. Teubner,et al.  Muon g − 2 and α ð M 2 Z Þ : A new data-based analysis , 2018 .

[90]  A. Nyffeler,et al.  Lattice calculation of the pion transition form factor π^0 \to γ^* γ^* , 2016 .

[91]  W. Marsden I and J , 2012 .

[92]  D. Leith,et al.  Measurement of the *--> and *--> transition form factors , 2011 .

[93]  D. Leith,et al.  Measurement of the ! c transition form factor , 2009 .

[94]  Burke,et al.  A MEASUREMENT OF THE RADIATIVE WIDTH OF THE q AND 77 ’ MESONS WITH THE ASP DETECTOR * , 1989 .