Overview of nanoelectronic devices

This paper provides an overview of research developments toward nanometer-scale electronic switching devices for use in building ultra-densely integrated electronic computers. Specifically, two classes of alternatives to the field-effect transistor are considered: (1) quantum-effect and single-electron solid-state devices and (2) molecular electronic devices. A taxonomy of devices in each class is provided, operational principles are described and compared for the various types of devices, and the literature about each is surveyed. This information is presented in nonmathematical terms intended for a general, technically interested readership.

[1]  J. Lupinski Conductive polymers , 1967 .

[2]  R. Keyes Power dissipation in information processing. , 1970, Science.

[3]  R. Landauer,et al.  Minimal energy dissipation in logic , 1970 .

[4]  H. Schneider,et al.  Conformational Studies by Low Temperature 13C‐NMR Spectroscopy , 1971 .

[5]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[6]  C. Mead,et al.  Fundamental limitations in microelectronics—I. MOS technology , 1972 .

[7]  W. C. Hittinger Metal-Oxide-Semiconductor Technology , 1973 .

[8]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[9]  L. Esaki,et al.  Tunneling in a finite superlattice , 1973 .

[10]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[11]  P. Atkins Quanta: A Handbook of Concepts , 1974 .

[12]  Leroy L. Chang,et al.  New Transport Phenomenon in a Semiconductor "Superlattice" , 1974 .

[13]  D. Doddrell,et al.  Conformational equilibria in cyclohexyltrimethylstannane and cyclohexyltrimethylplumbane by low temperature 13C NMR spectroscopy , 1976 .

[14]  Theodore I. Kamins,et al.  Device Electronics for Integrated Circuits , 1977 .

[15]  A. Epstein,et al.  Linear-chain conductors , 1979 .

[16]  J. Barker,et al.  On the physics and modeling of small semiconductor devices—I , 1980 .

[17]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[18]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[19]  S. Takeda,et al.  Solid neopentane C(CH3)4 as studied by nuclear magnetic resonance A detailed examination of methyl and molecular reorientation in the low temperature phase , 1982 .

[20]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[21]  T. Sollner,et al.  Resonant tunneling through quantum wells at frequencies up to 2.5 THz , 1983 .

[22]  K. Schoch Conductive polymers , 1983, Conference on Electrical Insulation & Dielectric Phenomena - Annual Report 1983.

[23]  Charles L. Seitz,et al.  Engineering limits on computer performance , 1984 .

[24]  R. Kiehl,et al.  Resonant tunneling transistor with quantum well base and high‐energy injection: A new negative differential resistance device , 1985 .

[25]  M. Reed,et al.  Resonant tunneling through a double GaAs/AlAs superlattice barrier, single quantum well heterostructure , 1986 .

[26]  W. Frensley Gallium arsenide transistors , 1987 .

[27]  F. L. Carter Molecular Electronic Devices II , 1987 .

[28]  J. Meindl Chips for advanced computing , 1987 .

[29]  Dolan,et al.  Observation of single-electron charging effects in small tunnel junctions. , 1987, Physical review letters.

[30]  J. Hopfield,et al.  A Molecular Shift Register Based on Electron Transfer , 1988, Science.

[31]  A. Aviram Molecules for memory, logic and amplification , 1988 .

[32]  J. Whitaker,et al.  Picosecond switching time measurement of a resonant tunneling diode , 1988 .

[33]  R. Bate The quantum-effect device: Tomorrow's transistors , 1988 .

[34]  G. Frazier An Ideology For Nanoelectronics , 1988 .

[35]  M. Aizawa Molecular electronic devices. , 1988 .

[36]  K. Likharev Correlated discrete transfer of single electrons in ultrasmall tunnel junctions , 1988 .

[37]  M. Reed,et al.  Pseudomorphic bipolar quantum resonant-tunneling transistor , 1989 .

[38]  박성주,et al.  Overview of Nanoelectronics , 1989 .

[39]  G. Whitesides,et al.  Formation of Monolayers by the Coadsorption of Thiols on Gold: Variation in the Length of the Alkyl Chain , 1989 .

[40]  A. Aviram,et al.  Evidence of switching and rectification by a single molecule effected with a scanning tunneling microscope , 1989 .

[41]  M. Kozicki,et al.  Nanostructure Physics and Fabrication , 1989 .

[42]  Stuart C. Schwartz,et al.  Concurrent Computations: Algorithms, Architecture, and Technology , 1989 .

[43]  A. Aviram Molecular Electronics Science and Technology , 1989 .

[44]  K. Mullis The unusual origin of the polymerase chain reaction. , 1990, Scientific American.

[45]  D. Ferry,et al.  Ultra-submicrometer-gate AlGaAs/GaAs HEMTs , 1990, IEEE Electron Device Letters.

[46]  Cheng T. Wang Introduction to semiconductor technology : GaAs and related compounds , 1990 .

[47]  M. Ono [Scanning tunneling microscope]. , 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[48]  M. Kanatzidis SPECIAL REPORT: Conductive Polymers , 1990 .

[49]  Wilson,et al.  Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. , 1990, Physical review letters.

[50]  J. Tour,et al.  Approaches to Orthogonally Fused Conducting Polymers For Molecular Electronics , 1990 .

[51]  S. Datta,et al.  Quantum Electron Devices , 1990 .

[52]  G. Shedd,et al.  The scanning tunneling microscope as a tool for nanofabrication , 1990 .

[53]  Michael J. Paulus,et al.  Differential multiple-valued logic using resonant tunneling diodes , 1990, Proceedings of the Twentieth International Symposium on Multiple-Valued Logic.

[54]  D. Eigler,et al.  An atomic switch realized with the scanning tunnelling microscope , 1991, Nature.

[55]  C. R. Martin,et al.  Molecular and supermolecular origins of enhanced electric conductivity in template-synthesized polyheterocyclic fibrils. 1. Supermolecular effects , 1991 .

[56]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[57]  C. Sah Fundamentals of Solid State Electronics , 1991 .

[58]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[59]  M. Reed,et al.  Resonant transmission in the base/collector junction of a bipolar quantum‐well resonant‐tunneling transistor , 1991 .

[60]  N. Seeman The use of branched DNA for nanoscale fabrication , 1991 .

[61]  J. Tour,et al.  Extended orthogonally fused conducting oligomers for molecular electronic devices , 1991 .

[62]  C. Joachim The conductance of a single molecule , 1991 .

[63]  B. Su,et al.  Observation of Single-Electron Charging in Double-Barrier Heterostructures , 1992, Science.

[64]  R. Merkle Self replicating systems and molecular manufacturing , 1992 .

[65]  Ari Aviram,et al.  A strategic plan for molecular electronics , 1992 .

[66]  Robert W. Keyes,et al.  The Future of Solid‐State Electronics , 1992 .

[67]  James Lewis,et al.  Quantum Transistors and Integrated Circuits , 1992 .

[68]  W. Göpel,et al.  Nanostructures Based on Molecular Materials , 1993 .

[69]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[70]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .

[71]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[72]  M. Devoret,et al.  Single-electron transfer in metallic nanostructures , 1992, Nature.

[73]  M. Nagata,et al.  Limitations, innovations, and challenges of circuits and devices into a half micrometer and beyond , 1992 .

[74]  Lutz J. Micheel Heterojunction bipolar technology for emitter-coupled multiple-valued logic in gigahertz adders and multipliers , 1992, [1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic.

[75]  S. Chou,et al.  Single-electron Coulomb blockade in a nanometer field-effect transistor with a single barrier , 1992 .

[76]  S. Novick Quanta: a Handbook of Concepts, 2nd ed. , 1992 .

[77]  J. Baggott The Meaning of Quantum Theory: A Guide for Students of Chemistry and Physics , 1992 .

[78]  A. Seabaugh,et al.  Nine-state resonant tunneling diode memory , 1992, IEEE Electron Device Letters.

[79]  R. Merkle Reversible electronic logic using switches , 1993 .

[80]  M. Lutwyche,et al.  A proposal of nanoscale devices based on atom/molecule switching , 1993 .

[81]  Martin,et al.  Molecular rectifier. , 1993, Physical review letters.

[82]  L. Lindoy Marvels of molecular device , 1993, Nature.

[83]  D. Beratan,et al.  Molecular electronics: observation of molecular rectification. , 1993, Science.

[84]  García,et al.  Quantum atom switch: Tunneling of Xe atoms. , 1993, Physical review. B, Condensed matter.

[85]  C. Fiegna,et al.  Sub-50 nm gate length n-MOSFETs with 10 nm phosphorus source and drain junctions , 1993, Proceedings of IEEE International Electron Devices Meeting.

[86]  Yu. G. Krieger Molecular electronics: Current state and future trends , 1993 .

[87]  E. Lieb,et al.  Quantum Dots , 2019, Encyclopedia of Color Science and Technology.

[88]  R. Keyes THE FUTURE OF THE TRANSISTOR , 1993 .

[89]  A. Seabaugh,et al.  Co-integrated resonant tunneling and heterojunction bipolar transistor full adder , 1993, Proceedings of IEEE International Electron Devices Meeting.

[90]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[91]  F. Buot,et al.  Mesoscopic physics and nanoelectronics: nanoscience and nanotechnology , 1993 .

[92]  M. Reed Quantum constructions. , 1993, Science.

[93]  J. Randall A lateral-resonant-tunneling universal quantum-dot cell , 1993 .

[94]  H. Byrne,et al.  Conducting Polymers for Molecular Electronics , 1993 .

[95]  Chun-Guey Wu,et al.  Conducting Polyaniline Filaments in a Mesoporous Channel Host , 1994, Science.

[96]  Yasuo Takahashi,et al.  Fabrication of a silicon quantum wire surrounded by silicon dioxide and its transport properties , 1994 .

[97]  T. D. Schneider,et al.  Sequence logos, machine/channel capacity, Maxwell's demon, and molecular computers: a review of the theory of molecular machines , 1994 .

[98]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[99]  G. Whitesides,et al.  Measurements of the Conductivity of Individual 10 Nm Carbon Nanotubes , 1994 .

[100]  N. Hampp,et al.  Mutated bacteriorhodopsins/spl minus/versatile media in optical image processing , 1994 .

[101]  M. Ratner,et al.  Electron transfer rates from time-dependent correlation functions. Wavepacket dynamics, solvent effects, and applications , 1994 .

[102]  P. D. Tougaw,et al.  Quantum cellular automata: the physics of computing with arrays of quantum dot molecules , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[103]  M. Ratner,et al.  Electron conduction in molecular wires. II. Application to scanning tunneling microscopy , 1994 .

[104]  T. Moore,et al.  Photosynthesis mimics as molecular electronic devices , 1994, IEEE Engineering in Medicine and Biology Magazine.

[105]  Davison,et al.  Transmission properties of molecular switches in semiconducting polymers. , 1994, Physical review. B, Condensed matter.

[106]  A. Seabaugh,et al.  Coupled-quantum-well field-effect resonant tunneling transistor for multi-valued logic/memory applications , 1994 .

[107]  H. Liu,et al.  Chapter 6 – High-Frequency Resonant-Tunneling Devices , 1994 .

[108]  M. Aizawa,et al.  Molecular interfacing for protein molecular devices and neurodevices , 1994, IEEE Engineering in Medicine and Biology Magazine.

[109]  Carver Mead Scaling of MOS technology to submicrometer feature sizes , 1994, J. VLSI Signal Process..

[110]  R. Birge Molecular and Biomolecular Electronics , 1994 .

[111]  J. Tour,et al.  Iterative Divergent/Convergent Approach to Linear Conjugated Oligomers by Successive Doubling of the Molecular Length: A Rapid Route to a 128 Å Long Potential Molecular Wire. , 1994 .

[112]  J. Tour,et al.  Iterative Divergent/Convergent Approach to Linear Conjugated Oligomers by Successive Doubling of the Molecular Length: A Rapid Route to a 128Å‐Long Potential Molecular Wire , 1994 .

[113]  S. Nes purek,et al.  Electroactive and photochromic molecular materials for wires, switches and memories , 1994, IEEE Engineering in Medicine and Biology Magazine.

[114]  F. Hong Photovoltaic effects in biomembranes/spl minus/reverse-engineering naturally occurring molecular optoelectronic devices , 1994, IEEE Engineering in Medicine and Biology Magazine.

[115]  J. S. Hall Nanocomputers and reversible logic , 1994 .

[116]  Robert R. Birge Protein-Based Three-Dimensional Memory , 1994 .

[117]  F.T. Hong,et al.  Molecular electronics: science and technology for the future , 1994, IEEE Engineering in Medicine and Biology Magazine.

[118]  Ronnie Mainieri Design Constraints for Nanometer Scale Quantum Computers , 1994 .

[119]  M. Ratner,et al.  Electron conduction in molecular wires. I. A scattering formalism , 1994 .

[120]  S. Roth,et al.  Survey of Industrial Applications of Conducting Polymers , 1995 .

[121]  G. Whitesides,et al.  Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates , 1995 .

[122]  Proceedings of the IEEE , 2018, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[123]  David K. Ferry Quantum Mechanics : An Introduction for Device Physicists and Electrical Engineers, Second Edition , 1995 .

[124]  A. Maiti,et al.  Growth of carbon nanotubes: a molecular dynamics study , 1995 .

[125]  N. C. MacDonald,et al.  Microelectromechanical Scanning Tunneling Microscope , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[126]  H. Iwai,et al.  A 40 nm gate length n-MOSFET , 1995 .

[127]  P. Avouris Manipulation of Matter at the Atomic and Molecular Levels , 1995 .

[128]  J. Gimzewski,et al.  ANALYSIS OF LOW-VOLTAGE I(V) CHARACTERISTICS OF A SINGLE C60 MOLECULE , 1995 .

[129]  A. R. Brown,et al.  Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators , 1995, Science.

[130]  James D. Meindl,et al.  Low power microelectronics: retrospect and prospect , 1995, Proc. IEEE.

[131]  R. M. Turton The Quantum Dot: A Journey into the Future of Microelectronics , 1995 .

[132]  M. Dresselhaus Carbon nanotubes , 1995 .

[133]  B. E. Kane,et al.  High mobility GaAs heterostructure field effect transistor for nanofabrication in which dopant‐induced disorder is eliminated , 1995 .

[134]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[135]  A. Korotkov Wireless single‐electron logic biased by alternating electric field , 1995 .

[136]  J. Christopher Love,et al.  Technologies and Designs for Electronic Nanocomputers , 1995 .

[137]  Andrés,et al.  Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. , 1995, Physical review. B, Condensed matter.

[138]  K. Ismail Si/SiGe high-speed field-effect transistors , 1995, Proceedings of International Electron Devices Meeting.

[139]  L. Pichon,et al.  Investigation of microwave π transitions in cesium beam clocks operated with U‐shaped H plane waveguide cavities , 1995 .

[140]  G. Stix Toward “Point One” , 1995 .

[141]  T. Someya,et al.  Fabrication of 10-Nanometer-scale GaAs Dot Structures by In Situ Selective Gas Etching with Self-Assembled InAs Dots as a Mask , 1995 .

[142]  Yasuo Takahashi,et al.  Fabrication technique for Si single-electron transistor operating at room temperature , 1995 .

[143]  G. Whitesides,et al.  Self-assembled monolayers and multilayers of conjugated thiols, α,ω-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces , 1995 .

[144]  Paul vanderWagt,et al.  High Density Memory Based on Quantum Device Technology , 1995 .

[145]  D. L. Klein,et al.  An approach to electrical studies of single nanocrystals , 1996 .

[146]  William A. Tolles Nanoscience and nanotechnology in Europe , 1996 .

[147]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[148]  M. Kastner Artificial Atoms:Their Physics and Potential Application , 1996 .

[149]  R. Service Materials Science: Mixing Nanotube Structures to Make a Tiny Switch , 1996, Science.

[150]  J. Tour,et al.  Are Single Molecular Wires Conducting? , 1996, Science.

[151]  M. Ancona Design of computationally useful single-electron digital circuits , 1996 .

[152]  U. Meirav,et al.  Single-electron phenomena in semiconductors , 1996 .

[153]  C. Quate,et al.  Interdigital cantilevers for atomic force microscopy , 1996 .

[154]  M. Ratner,et al.  Current‐voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification , 1996 .

[155]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .

[156]  J. Vinuesa,et al.  Length dependence of the electronic transparence (conductance) of a molecular wire , 1996 .

[157]  R. Nötzel,et al.  Self-organized growth of quantum-dot structures , 1996 .

[158]  Vwani P. Roychowdhury,et al.  Computational Paradigms in Nanoelectronics: Quantum Coupled Single Electron Logic and Neuromorphic Networks , 1996 .

[159]  A. Barclay The Quantum Dot: A Journey into the Future of Microelectronics , 1996 .

[160]  R. P. Andres,et al.  Self-Assembly of a Two-Dimensional Superlattice of Molecularly Linked Metal Clusters , 1996, Science.

[161]  John N. Randall,et al.  Potential nanoelectronic integrated circuit technologies , 1996 .

[162]  T. Honda,et al.  Shell Filling and Spin Effects in a Few Electron Quantum Dot. , 1996, Physical review letters.

[163]  Ralph,et al.  Spectroscopy of the superconducting gap in individual nanometer-scale aluminum particles. , 1996, Physical review letters.

[164]  Tian,et al.  Electronic conduction through organic molecules. , 1996, Physical review. B, Condensed matter.

[165]  R. P. Andres,et al.  Coulomb Staircase at Room Temperature in a Self-Assembled Molecular Nanostructure , 1996, Science.

[166]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[167]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[168]  E. Snow,et al.  Nanofabrication with proximal probes , 1996, Proc. IEEE.

[169]  J. Lyding UHV STM nanofabrication: progress, technology spin-offs, and challenges , 1997, Proc. IEEE.

[170]  S. Asai,et al.  Technology challenges for integration near and below 0.1 μm , 1997, Proc. IEEE.

[171]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[172]  Vwani P. Roychowdhury,et al.  Nanoelectronic architecture for Boolean logic , 1997, Proc. IEEE.

[173]  Mark R. Pinto,et al.  The future of solid-state electronics , 1997, Bell Labs Technical Journal.

[174]  C. Lent Quantum Computation and Its Perspective , 1997 .

[175]  K. Matsumoto STM/AFM nano-oxidation process to room-temperature-operated single-electron transistor and other devices , 1997, Proc. IEEE.

[176]  S. Matsui Nanostructure fabrication using electron beam and its application to nanometer devices , 1997, Proc. IEEE.

[177]  Observation of Conductance and Room Temperature Coulomb Blockade in a Molecule , 1997 .

[178]  J. Gimzewski,et al.  An electromechanical amplifier using a single molecule , 1997 .

[179]  Qiao-Qun Yu Single-Electron Devices , .