Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors

Gelatin hydrogel electrolytes (GHEs) with varying NaCl concentrations have been prepared by cross-linking an aqueous solution of gelatin with aqueous glutaraldehyde and characterized by scanning electron microscopy, differential scanning calorimetry, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic chronopotentiometry. Glass transition temperatures for GHEs range between 339.6 and 376.9 K depending on the dopant concentration. Ionic conductivity behavior of GHEs was studied with varying concentrations of gelatin, glutaraldehyde, and NaCl, and found to vary between 10(-3) and 10(-1) S cm(-1). GHEs have a potential window of about 1 V. Undoped and 0.25 N NaCl-doped GHEs follow Arrhenius equations with activation energy values of 1.94 and 1.88 x 10(-4) eV, respectively. Electrochemical supercapacitors (ESs) employing these GHEs in conjunction with Black Pearl Carbon electrodes are assembled and studied. Optimal values for capacitance, phase angle, and relaxation time constant of 81 F g(-1), 75 degrees, and 0.03 s are obtained for 3 N NaCl-doped GHE, respectively. ES with pristine GHE exhibits a cycle life of 4.3 h vs 4.7 h for the ES with 3 N NaCl-doped GHE. (c) 2007 The Electrochemical Society.

[1]  Prem N. Gupta,et al.  Characterization of H3PO4 based PVA complex system , 1996 .

[2]  Masaru Miyayama,et al.  Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes , 2002 .

[3]  Arumugam Manthiram,et al.  Amorphous Ruthenium‐Chromium Oxides for Electrochemical Capacitors , 1999 .

[4]  J. Fauvarque,et al.  A new class of PEO-based SPEs: structure, conductivity and application to alkaline secondary batteries , 1998 .

[5]  K. M. Abraham,et al.  Li+‐Conductive Solid Polymer Electrolytes with Liquid‐Like Conductivity , 1990 .

[6]  D. Rousseau,et al.  Some physical properties of crosslinked gelatin–maltodextrin hydrogels , 2006 .

[7]  M. Silva,et al.  Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate , 2004 .

[8]  W. Yonggang,et al.  Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites , 2004 .

[9]  Hiroshi Inoue,et al.  New Electric Double Layer Capacitor with Polymer Hydrogel Electrolyte , 2003 .

[10]  F. Béguin,et al.  Nanotubular materials for supercapacitors , 2001 .

[11]  L. Janssen,et al.  The electrolysis of an acidic NaCl solution with a graphite anode-II. atomic chlorine present in a graphite electrode☆ , 1970 .

[12]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[13]  Y. Matsuda,et al.  Gel polymer electrolytes for electric double layer capacitors , 1998 .

[14]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[15]  S. Pitchumani,et al.  Cross-linked polymer hydrogel electrolytes for electrochemical capacitors , 2006 .

[16]  F. M. Gray Solid Polymer Electrolytes: Fundamentals and Technological Applications , 1991 .

[17]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[18]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[19]  Chi-Chang Hu,et al.  How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors , 2004 .

[20]  J. Fauvarque,et al.  Nickel/Metal Hydride Secondary Batteries Using an Alkaline Solid Polymer Electrolyte , 1999 .

[21]  Felix B. Dias,et al.  Trends in polymer electrolytes for secondary lithium batteries , 2000 .

[22]  Venkat Srinivasan,et al.  Studies on the Capacitance of Nickel Oxide Films: Effect of Heating Temperature and Electrolyte Concentration , 2000 .

[23]  M. Anderson,et al.  Sol‐Gel‐Derived Thin‐Film Manganese Dioxide Cathodes , 1996 .

[24]  N. Nassif,et al.  Electrochemical wear of graphite anodes during electrolysis of brine , 1991 .

[25]  John B. Goodenough,et al.  Supercapacitor Behavior with KCl Electrolyte , 1999 .

[26]  A. Yamada,et al.  Keggin-type heteropolyacids as electrode materials for electrochemical supercapacitors , 1998 .

[27]  C. Balasubramanian,et al.  Dielectric properties of terbium fluoride thin film capacitors , 1980 .

[28]  S. M. Attia,et al.  Morphological Effects on the Electrical and Electrochemical Properties of Carbon Aerogels , 2001 .

[29]  Sagar Mitra,et al.  Electrochemical capacitors with plasticized gel-polymer electrolytes , 2001 .

[30]  R. Sathyamoorthy,et al.  Dielectric properties of vacuum deposited Bi2Te3 thin films , 2005 .

[31]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[32]  Chun–Chen Yang Polymer Ni–MH battery based on PEO–PVA–KOH polymer electrolyte , 2002 .

[33]  B. V. Tilak,et al.  Materials for electrochemical capacitors: Theoretical and experimental constraints , 1996 .

[34]  Bruce Dunn,et al.  Carbon aerogels for electrochemical applications , 1998 .

[35]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[36]  Wei Sun,et al.  Capacitance properties of poly(3,4-ethylenedioxythiophene)/polypyrrole composites , 2006 .

[37]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[38]  Marina Mastragostino,et al.  Conducting polymers as electrode materials in supercapacitors , 2002 .

[39]  Kinam Park,et al.  Biodegradable Hydrogels for Drug Delivery , 1993 .

[40]  B. Popov,et al.  Studies on Co-based catalysts supported on modified carbon substrates for PEMFC cathodes , 2006 .

[41]  Bruno Scrosati,et al.  Applications of electroactive polymers , 1993 .

[42]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[43]  J. Xu,et al.  Amorphous Manganese Dioxide: A High Capacity Lithium Intercalation Host , 1999 .

[44]  M. Rincón,et al.  Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes for symmetric and asymmetric electrochemical capacitor cells , 2006 .

[45]  S. Vansteenkiste,et al.  Some aspects of the crosslinking of gelatin by dextran dialdehydes , 1993 .

[46]  J Winter,et al.  The Material Properties of Gelatin Gels , 1975 .

[47]  R. Slade,et al.  Polymer electrodes doped with heteropolymetallates and their use within solid-state supercapacitors , 2003 .

[48]  N. Peppas,et al.  Hydrogels in Pharmaceutical Formulations , 1999 .

[49]  S. Hsu,et al.  Preparation of networks of gelatin and genipin as degradable biomaterials , 2003 .

[50]  C. Iwakura,et al.  The possible use of polymer gel electrolytes in nickel/metal hydride battery , 2002 .

[51]  R. Savinell,et al.  Heat‐Treated Iron(III) Tetramethoxyphenyl Porphyrin Supported on High‐Area Carbon as an Electrocatalyst for Oxygen Reduction I. Characterization of the Electrocatalyst , 1998 .

[52]  H. Teng,et al.  A novel method for carbon modification with minute polyaniline deposition to enhance the capacitance of porous carbon electrodes , 2003 .

[53]  A. Samui,et al.  All-solid-supercapacitor based on polyaniline and sulfonated polymers , 2006 .

[54]  Masayuki Morita,et al.  Electric double layer capacitors with new gel electrolytes , 1995 .

[55]  Jean Gamby,et al.  Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors , 2001 .

[56]  E. Frąckowiak,et al.  Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites , 2004 .

[57]  François Béguin,et al.  Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations , 2005 .

[58]  J. L. Kaschmitter,et al.  The Aerocapacitor: An Electrochemical Double‐Layer Energy‐Storage Device , 1993 .