On efficiency of a single variable bi-objective optimization algorithm
暂无分享,去创建一个
[1] Panos M. Pardalos,et al. Non-Convex Multi-Objective Optimization , 2017 .
[2] James M. Calvin,et al. On convergence rate of a rectangular partition based global optimization algorithm , 2018, J. Glob. Optim..
[3] Paolo Serafini,et al. Some Considerations about Computational Complexity for Multi Objective Combinatorial Problems , 1987 .
[4] James M. Calvin,et al. An Adaptive Univariate Global Optimization Algorithm and Its Convergence Rate for Twice Continuously Differentiable Functions , 2012, J. Optim. Theory Appl..
[5] Matthias Ehrgott,et al. Output-sensitive Complexity of Multiobjective Combinatorial Optimization , 2016, ArXiv.
[6] Jörg Fliege,et al. Complexity of gradient descent for multiobjective optimization , 2018, Optim. Methods Softw..
[7] James M. Calvin,et al. Adaptive approximation of the minimum of Brownian motion , 2017, J. Complex..
[8] Kalyanmoy Deb,et al. Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.
[9] Antanas Zilinskas. On the worst-case optimal multi-objective global optimization , 2013, Optim. Lett..
[10] Marco Laumanns,et al. An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method , 2006, Eur. J. Oper. Res..
[11] A. Zilinskas,et al. On the Convergence of the P-Algorithm for One-Dimensional Global Optimization of Smooth Functions , 1999 .
[12] James M. Calvin. An Adaptive Univariate Global Optimization Algorithm and Its Convergence Rate under the Wiener Measure , 2011, Informatica.
[13] E. Novak,et al. Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .