Compositional Quantum Logic

Quantum logic aims to capture essential quantum mechanical structure in order-theoretic terms. The Achilles’ heel of quantum logic is the absence of a canonical description of composite systems, given descriptions of their components. We introduce a framework in which order-theoretic structure comes with a primitive composition operation. The order is extracted from a generalisation of C*-algebra that applies to arbitrary dagger symmetric monoidal categories, which also provide the composition operation. In fact, our construction is entirely compositional, without any additional assumptions on limits or enrichment. Interpreted in the category of finite-dimensional Hilbert spaces, it yields the projection lattices of arbitrary finite-dimensional C*-algebras. Interestingly, there are models that falsify standardly assumed correspondences, most notably the correspondence between noncommutativity of the algebra and nondistributivity of the order.

[1]  Robert W. Spekkens,et al.  Picturing classical and quantum Bayesian inference , 2011, Synthese.

[2]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[3]  Dusko Pavlovic,et al.  A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.

[4]  M. P. Soler,et al.  Characterization of hilbert spaces by orthomodular spaces , 1995 .

[5]  J. Vicary Categorical Formulation of Finite-Dimensional Quantum Algebras , 2008, 0805.0432.

[6]  Simon Perdrix,et al.  Rewriting Measurement-Based Quantum Computations with Generalised Flow , 2010, ICALP.

[7]  Stephen Clark,et al.  Mathematical Foundations for a Compositional Distributional Model of Meaning , 2010, ArXiv.

[8]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[9]  C. Piron,et al.  On the Foundations of Quantum Physics , 1976 .

[10]  B. Coecke,et al.  Categories for the practising physicist , 2009, 0905.3010.

[11]  B. Coecke,et al.  Classical and quantum structuralism , 2009, 0904.1997.

[12]  Peter Selinger,et al.  Idempotents in Dagger Categories: (Extended Abstract) , 2008, QPL.

[13]  Bob Coecke,et al.  Axiomatic Description of Mixed States From Selinger's CPM-construction , 2008, QPL.

[14]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[15]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[16]  Bob Coecke,et al.  The logic of quantum mechanics - Take II , 2012, ArXiv.

[17]  Chris Heunen,et al.  Entangled and sequential quantum protocols with dephasing. , 2011, Physical review letters.

[18]  Aleks Kissinger,et al.  Categories of Quantum and Classical Channels (extended abstract) , 2012, QPL.

[19]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[20]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[21]  G. M. Clemence,et al.  Blow up of smooth solutions to the barotropic compressible magnetohydrodynamic equations with finite mass and energy , 2008, 0811.4359.

[22]  Dusko Pavlovic,et al.  Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.

[23]  Miklós Rédei,et al.  Quantum Logic in Algebraic Approach , 1998 .

[24]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[25]  John Harding Daggers, Kernels, Baer *-semigroups, and Orthomodularity , 2013, J. Philos. Log..

[26]  Constantin Piron,et al.  Deterministic evolutions and Schrödinger flows , 1995 .

[27]  O. Ore Structures and group theory. II , 1937 .

[28]  Samson Abramsky,et al.  H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics , 2010, 1011.6123.

[29]  Isar Stubbe,et al.  Propositional systems, Hilbert lattices and generalized hilbert spaces , 2007 .

[30]  A. Vogt An Axiomatic Basis for Quantum Mechanics: Vol. 1, Derivation of Hilbert Space Structure (Günther Ludwig) , 1987 .

[31]  John Harding,et al.  A Link between Quantum Logic and Categorical Quantum Mechanics , 2009 .

[32]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[33]  Chris Heunen,et al.  Relative Frobenius algebras are groupoids , 2011, 1112.1284.

[34]  G. Ludwig An axiomatic basis for quantum mechanics , 1985 .

[35]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[36]  Bart Jacobs Orthomodular lattices, Foulis Semigroups and Dagger Kernel Categories , 2010, Log. Methods Comput. Sci..

[37]  Dominic Horsman,et al.  Quantum picturalism for topological cluster-state computing , 2011, 1101.4722.

[38]  Bart Jacobs,et al.  Quantum Logic in Dagger Kernel Categories , 2009, QPL@MFPS.

[39]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[40]  C. H. Randall,et al.  Operational Statistics. I. Basic Concepts , 1972 .

[41]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[42]  Bob Coecke,et al.  New Structures for Physics , 2011 .

[43]  Aleks Kissinger,et al.  The Compositional Structure of Multipartite Quantum Entanglement , 2010, ICALP.

[44]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[45]  Bill Edwards,et al.  Phase Groups and the Origin of Non-locality for Qubits , 2010, QPL@MFPS.