Optimal design of the Barker proposal and other locally-balanced Metropolis-Hastings algorithms
暂无分享,去创建一个
[1] D. Dittmar. Slice Sampling , 2000 .
[2] Giacomo Zanella,et al. Informed Proposals for Local MCMC in Discrete Spaces , 2017, Journal of the American Statistical Association.
[3] Jiqiang Guo,et al. Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.
[4] P. Fearnhead,et al. The Random Walk Metropolis: Linking Theory and Practice Through a Case Study , 2010, 1011.6217.
[5] Paul Fearnhead,et al. Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo , 2016, Statistical Science.
[6] Wilfrid S. Kendall,et al. A Dirichlet Form approach to MCMC Optimal Scaling , 2016 .
[7] R. Tweedie,et al. Exponential convergence of Langevin distributions and their discrete approximations , 1996 .
[8] Samuel Power,et al. Accelerated Sampling on Discrete Spaces with Non-Reversible Markov Processes , 2019 .
[9] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[10] Carlos E. Rodríguez,et al. Searching for efficient Markov chain Monte Carlo proposal kernels , 2013, Proceedings of the National Academy of Sciences.
[11] Jeffrey S. Rosenthal,et al. AMCMC: An R interface for adaptive MCMC , 2007, Comput. Stat. Data Anal..
[12] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[13] A. Barker. Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .
[14] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[15] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[16] Gareth O. Roberts,et al. Examples of Adaptive MCMC , 2009 .
[18] G. Roberts,et al. Optimal Scaling of Random Walk Metropolis Algorithms with Non-Gaussian Proposals , 2011 .
[19] Michael C.H. Choi,et al. Metropolis–Hastings reversiblizations of non-reversible Markov chains , 2017, Stochastic Processes and their Applications.
[20] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[21] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[22] Giacomo Zanella,et al. The Barker proposal: combining robustness and efficiency in gradient-based MCMC , 2019 .
[23] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .