Radial fourier analysis (RFA) image descriptor

This article presents a spectrum-based local image descriptor, namely, Radial Fourier Analysis (RFA) image descriptor. The RFA descriptor uses Fourier transform to convert the image gradients in the local region of a keypoint from spatial domain to frequency domain. The transformed gradient frequencies are then analysed to obtain the principle description within the local region. The principle description is represented by low frequency Fourier coefficients and they are directly used in the descriptor to represent the keypoint. Experimental results using a series of performance evaluation procedures showed that RFA descriptor demonstrates higher performances against different image variations comparing to benchmark local image descriptors. The results also indicated that the RFA descriptor is particularly reliable when used on the images, which are degraded by blurring and JPG compression. According to the performance evaluations presented in this paper, spectral analysis shows strong potential for local image description. It paves the way for future research in alternative spectrum-based techniques such as Wavelet transform to precisely analyse local image patches.

[1]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[3]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[4]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[6]  Andrew Zisserman,et al.  Multi-view Matching for Unordered Image Sets, or "How Do I Organize My Holiday Snaps?" , 2002, ECCV.

[7]  Xi Li,et al.  Visual Distance Measures for Object Retrieval , 2012, 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA).

[8]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Jintao Li,et al.  Hierarchical spatio-temporal context modeling for action recognition , 2009, CVPR.

[10]  H. Bischof,et al.  ROBUST AND FULLY AUTOMATED IMAGE REGISTRATION USING INVARIANT FEATURES , 2004 .

[11]  Jing Li,et al.  A comprehensive review of current local features for computer vision , 2008, Neurocomputing.

[12]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[13]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[14]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[15]  S. C. F. Lin,et al.  The impact of information volume on SIFT descriptor , 2013, 2013 International Conference on Wavelet Analysis and Pattern Recognition.

[16]  Xuelong Li,et al.  Multitraining Support Vector Machine for Image Retrieval , 2006, IEEE Transactions on Image Processing.

[17]  Trevor Darrell,et al.  Heavy-tailed Distances for Gradient Based Image Descriptors , 2011, NIPS.

[18]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Bernt Schiele,et al.  Local features for object class recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[20]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[21]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.