A Vector Finite Element Time-Domain Method for Solving Maxwell's Equations on Unstructured Hexahedral Grids

In this paper the vector finite element time-domain (VFETD) method is derived, analyzed, and validated. The VFETD method uses edge vector finite elements as a basis for the electric field and face vector finite elements as a basis for the magnetic flux density. The Galerkin method is used to convert Maxwell's equations to a coupled system of ordinary differential equations. The leapfrog method is used to advance the fields in time. The method is shown to be stable and to conserve energy and charge for arbitrary hexahedral grids. A numerical dispersion analysis shows the method to be second order accurate on distorted hexahedral grids. Several computational experiments are performed to determine the accuracy and efficiency of the method.

[1]  Alain Bossavit,et al.  Edge-elements for scattering problems , 1989 .

[2]  A. Bossavit Solving Maxwell equations in a closed cavity, and the question of 'spurious modes' , 1990 .

[3]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[4]  Peter Monk,et al.  A mixed method for approximating Maxwell's equations , 1991 .

[5]  Z. Cendes,et al.  Spurious modes in finite-element methods , 1995 .

[6]  J. S. Chen,et al.  Conformal hybrid finite difference time domain and finite volume time domain , 1994 .

[7]  Jin-Fa Lee,et al.  Whitney elements time domain (WETD) methods , 1995 .

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  Jin-Fa Lee,et al.  Full-wave analysis of dielectric waveguides using tangential vector finite elements , 1991 .

[10]  A. Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .

[11]  P. B. MONK,et al.  A Dispersion Analysis of Finite Element Methods for Maxwell's Equations , 1994, SIAM J. Sci. Comput..

[12]  Z. Cendes Vector finite elements for electromagnetic field computation , 1991 .

[13]  V. P. Cable,et al.  Finite-volume time-domain (FVTD) techniques for EM scattering , 1991 .

[14]  N. Madsen Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids , 1995 .

[15]  B. M. Dillon,et al.  A comparison of formulations for the vector finite element analysis of waveguides , 1994 .

[16]  A. Taflove,et al.  Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations , 1975 .

[17]  Waymond R. Scott,et al.  NUMERICAL DISPERSION IN THE FINITE-ELEMENT METHOD USING TRIANGULAR EDGE ELEMENTS , 1995 .

[18]  A. Konrad,et al.  Vector Variational Formulation of Electromagnetic Fields in Anisotropic Media , 1976 .

[19]  Peter Monk,et al.  Analysis of a finite element method for Maxwell's equations , 1992 .

[20]  Keith D. Paulsen,et al.  Synthesis of vector parasites in finite element Maxwell solutions , 1993 .

[21]  Raj Mittra,et al.  Use of Whitney's edge and face elements for efficient finite element time domain solution of Maxwell's equations , 1994 .

[22]  V. Shankar,et al.  A Time-Domain, Finite-Volume Treatment for the Maxwell Equations , 1990 .

[23]  Jin-Fa Lee,et al.  Time-domain finite-element methods , 1997 .

[24]  Richard W. Ziolkowski,et al.  A Three-Dimensional Modified Finite Volume Technique for Maxwell's Equations , 1990 .

[25]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .

[26]  I. Babuska,et al.  Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation , 1995 .

[27]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[28]  D. J. Riley,et al.  VOLMAX: a solid-model-based, transient volumetric Maxwell solver using hybrid grids , 1997 .

[29]  W. Scott,et al.  An investigation of numerical dispersion in the vector finite element method using quadrilateral elements , 1994 .

[30]  Raj Mittra,et al.  Radar cross section computation of inhomogeneous scatterers using edge‐based finite element methods in frequency and time domains , 1993 .

[31]  Raj Mittra,et al.  A finite-element-method frequency-domain application of the perfectly matched layer (PML) concept , 1995 .

[32]  Z. J. Cendes,et al.  Solution of ferrite loaded waveguide using vector finite elements , 1995 .

[33]  Andrew F. Peterson,et al.  Analysis of propagation on open microstrip lines using mixed‐order covariant projection vector finite elements , 1995 .

[34]  S. Brandon,et al.  Stability of the DSI electromagnetic update algorithm on a chevron grid [plasma] , 1995 .

[35]  Waymond R. Scott,et al.  Numerical dispersion in the finite element method , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.

[36]  D. White,et al.  Improved vector FEM solutions of Maxwell's equations using grid pre-conditioning , 1997 .

[37]  J. Swinburne Electromagnetic Theory , 1894, Nature.

[38]  W. F. Hall,et al.  A time-domain differential solver for electromagnetic scattering problems , 1989 .

[39]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[40]  J. A. Buck,et al.  Engineering Electromagnetics , 1967 .

[41]  Allen Taflove,et al.  Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures , 1988 .

[42]  Jin-Fa Lee,et al.  Tangential vector finite elements for electromagnetic field computation , 1991 .

[43]  Jin-Fa Lee,et al.  WETD /spl minus/ a finite element time-domain approach for solving Maxwell's equations , 1994 .

[44]  Raj Mittra,et al.  Mesh truncation by perfectly matched anisotropic absorbers in the finite-element method , 1996 .

[45]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[46]  Ralph W. Noack,et al.  Time domain solutions of Maxwell's equations using a finite-volume formulation , 1992 .

[47]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[48]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .