Face Normals "In-the-Wild" Using Fully Convolutional Networks

In this work we pursue a data-driven approach to the problem of estimating surface normals from a single intensity image, focusing in particular on human faces. We introduce new methods to exploit the currently available facial databases for dataset construction and tailor a deep convolutional neural network to the task of estimating facial surface normals in-the-wild. We train a fully convolutional network that can accurately recover facial normals from images including a challenging variety of expressions and facial poses. We compare against state-of-the-art face Shape-from-Shading and 3D reconstruction techniques and show that the proposed network can recover substantially more accurate and realistic normals. Furthermore, in contrast to other existing face-specific surface recovery methods, we do not require the solving of an explicit alignment step due to the fully convolutional nature of our network.

[1]  Jitendra Malik,et al.  Shape, Illumination, and Reflectance from Shading , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Ronen Basri,et al.  Photometric stereo with general, unknown lighting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[3]  Daniel Snow,et al.  Determining Generative Models of Objects Under Varying Illumination: Shape and Albedo from Multiple Images Using SVD and Integrability , 1999, International Journal of Computer Vision.

[4]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[5]  Frédéric Jurie,et al.  Face Recognition using Local Quantized Patterns , 2012, BMVC.

[6]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression (PIE) database , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[7]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[8]  Rama Chellappa,et al.  A Method for Enforcing Integrability in Shape from Shading Algorithms , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Stefanos Zafeiriou,et al.  300 Faces In-The-Wild Challenge: database and results , 2016, Image Vis. Comput..

[10]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[11]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[13]  Kun Zhou,et al.  Intrinsic Face Image Decomposition with Human Face Priors , 2014, ECCV.

[14]  Matthew Turk,et al.  A Morphable Model For The Synthesis Of 3D Faces , 1999, SIGGRAPH.

[15]  Rob Fergus,et al.  Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale Convolutional Architecture , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[16]  Iasonas Kokkinos,et al.  Modeling local and global deformations in Deep Learning: Epitomic convolution, Multiple Instance Learning, and sliding window detection , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[18]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[19]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[20]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[21]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[22]  Ravi Ramamoorthi,et al.  Analytic PCA Construction for Theoretical Analysis of Lighting Variability in Images of a Lambertian Object , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[25]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[26]  Edwin R. Hancock,et al.  New Constraints on Data-Closeness and Needle Map Consistency for Shape-from-Shading , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Stefanos Zafeiriou,et al.  Face Flow , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[28]  Jean-Denis Durou,et al.  Numerical methods for shape-from-shading: A new survey with benchmarks , 2008, Comput. Vis. Image Underst..

[29]  Nathan Silberman,et al.  Indoor scene segmentation using a structured light sensor , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[30]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[31]  Sami Romdhani,et al.  A 3D Face Model for Pose and Illumination Invariant Face Recognition , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[32]  Yiying Tong,et al.  Unconstrained 3D face reconstruction , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Konrad Schindler,et al.  Just Look at the Image: Viewpoint-Specific Surface Normal Prediction for Improved Multi-View Reconstruction , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Xiangyu Zhu,et al.  Face Alignment in Full Pose Range: A 3D Total Solution , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Abhinav Gupta,et al.  Marr Revisited: 2D-3D Alignment via Surface Normal Prediction , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Ira Kemelmacher-Shlizerman,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 3d Face Reconstruction from a Single Image Using a Single Reference Face Shape , 2022 .

[37]  Edwin R. Hancock,et al.  Recovering Facial Shape Using a Statistical Model of Surface Normal Direction , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[39]  Stefanos Zafeiriou,et al.  300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[40]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[41]  G. Stiny Shape , 1999 .

[42]  Stefanos Zafeiriou,et al.  Automatic construction Of robust spherical harmonic subspaces , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Marc Pollefeys,et al.  Discriminatively Trained Dense Surface Normal Estimation , 2014, ECCV.

[44]  Jitendra Malik,et al.  Hypercolumns for object segmentation and fine-grained localization , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Thomas S. Huang,et al.  Interactive Facial Feature Localization , 2012, ECCV.

[46]  Eli Shechtman,et al.  Matching Local Self-Similarities across Images and Videos , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  William A. P. Smith,et al.  A Linear Approach to Face Shape and Texture Recovery using a 3D Morphable Model , 2010, BMVC.

[48]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[49]  Shaun J. Canavan,et al.  BP4D-Spontaneous: a high-resolution spontaneous 3D dynamic facial expression database , 2014, Image Vis. Comput..

[50]  Berthold K. P. Horn SHAPE FROM SHADING: A METHOD FOR OBTAINING THE SHAPE OF A SMOOTH OPAQUE OBJECT FROM ONE VIEW , 1970 .

[51]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Yiying Tong,et al.  Adaptive 3D Face Reconstruction from Unconstrained Photo Collections , 2017, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Stefanos Zafeiriou,et al.  Kernel-PCA Analysis of Surface Normals for Shape-from-Shading , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Jun Wang,et al.  A 3D facial expression database for facial behavior research , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[55]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[56]  Iasonas Kokkinos,et al.  UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using Diverse Datasets and Limited Memory , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Xiaoming Liu,et al.  Large-Pose Face Alignment via CNN-Based Dense 3D Model Fitting , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[58]  R. Gross Face Databases , 2005 .

[59]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[60]  Stefanos Zafeiriou,et al.  A 3D Morphable Model Learnt from 10,000 Faces , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[61]  Stefan Roth,et al.  Discriminative shape from shading in uncalibrated illumination , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Takeo Kanade,et al.  Multi-PIE , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[64]  Ping-Sing Tsai,et al.  Shape from Shading: A Survey , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Edwin R. Hancock,et al.  Facial Shape-from-shading and Recognition Using Principal Geodesic Analysis and Robust Statistics , 2007, International Journal of Computer Vision.

[66]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[67]  Paul E. Debevec,et al.  Effect of illumination on automatic expression recognition: A novel 3D relightable facial database , 2011, Face and Gesture 2011.

[68]  Ira Kemelmacher-Shlizerman,et al.  Face reconstruction in the wild , 2011, 2011 International Conference on Computer Vision.

[69]  Lijun Yin,et al.  A high-resolution 3D dynamic facial expression database , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[70]  Yiying Tong,et al.  FaceWarehouse: A 3D Facial Expression Database for Visual Computing , 2014, IEEE Transactions on Visualization and Computer Graphics.

[71]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[72]  Abhinav Gupta,et al.  Designing deep networks for surface normal estimation , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[74]  Stefanos Zafeiriou,et al.  The Photoface database , 2011, CVPR 2011 WORKSHOPS.

[75]  Ira Kemelmacher-Shlizerman,et al.  Internet Based Morphable Model , 2013, 2013 IEEE International Conference on Computer Vision.