Forward and backward unidirectional scattering from plasmonic coupled wires.

We analyze the resonant electromagnetic response of sub-wavelength plasmonic dimers formed by two silver strips separated by a thin dielectric spacer and embedded in a uniform dielectric media. We demonstrate that the off-resonant electric and resonant, geometric shape-leveraged, magnetic polarizabilities of the dimer element can be designed to have close absolute values in a certain spectral range, resulting in a predominantly unidirectional scattering of the incident field due to pronounced magneto-electric interference. Switching between forward and backward directionality can be achieved with a single element by changing the excitation wavelength, with the scattering direction defined by the relative phases of the polarizabilities. We extend the analysis to some periodic configurations, including the specific case of a perforated metal film, and discuss the differences between the observed unidirectional scattering and the extraordinary transmission effect. The unidirectional response can be preserved and enhanced with periodic arrays of dimers and can find applications in nanoantenna devices, integrated optic circuits, sensors with nanoparticles, photovoltaic systems, or perfect absorbers; while the option of switching between forward and backward unidirectional scattering may create interesting possibilities for manipulating optical pressure forces.

[1]  Negative refractive index in symmetric cut-wire pair metamaterial , 2011 .

[2]  J. Greffet,et al.  Optical patch antennas for single photon emission using surface plasmon resonances. , 2010, Physical review letters.

[3]  Thomas Koschny,et al.  Unifying approach to left-handed material design. , 2006, Optics letters.

[4]  Mikael Käll,et al.  A bimetallic nanoantenna for directional colour routing , 2011, Nature communications.

[5]  C. Lee Giles,et al.  Electromagnetic scattering by magnetic spheres , 1983 .

[6]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[7]  P. Chaumet,et al.  Electromagnetic force and torque on magnetic and negative-index scatterers. , 2009, Optics express.

[8]  F. García-Vidal,et al.  Transmission Resonances on Metallic Gratings with Very Narrow Slits , 1999, cond-mat/9904365.

[9]  J. Sáenz,et al.  Angle-suppressed scattering and optical forces on submicrometer dielectric particles. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  R. W. Wood,et al.  Anomalous Diffraction Gratings , 1935 .

[11]  G Dolling,et al.  Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. , 2005, Optics letters.

[12]  Andrey E. Miroshnichenko,et al.  Directional visible light scattering by silicon nanoparticles , 2012, Nature Communications.

[13]  Gary C. Salzman,et al.  Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation , 1986 .

[14]  Ekmel Ozbay,et al.  A Planar Metamaterial With Dual-Band Double-Negative Response at EHF , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Fernando Moreno,et al.  Light scattering by an array of electric and magnetic nanoparticles. , 2010, Optics express.

[16]  Yingzhou Huang,et al.  Directional light emission from propagating surface plasmons of silver nanowires. , 2009, Nano letters.

[17]  V. Shalaev Optical negative-index metamaterials , 2007 .

[18]  Wei Liu,et al.  Broadband unidirectional scattering by magneto-electric core-shell nanoparticles. , 2012, ACS nano.

[19]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[20]  Kirk A. Fuller,et al.  Light Scattering by Agglomerates: Coupled Electric and Magnetic Dipole Method , 1994 .

[21]  M. Noginov,et al.  Magnetic dipole based systems for probing optical magnetism , 2008 .

[22]  Ekmel Ozbay,et al.  Experimental observation of left-handed transmission in a bilayer metamaterial under normal-to-plane propagation. , 2006, Optics express.

[23]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[24]  Mark L Brongersma,et al.  General properties of dielectric optical antennas. , 2009, Optics express.

[25]  Malin Premaratne,et al.  Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. , 2010, Optics express.

[26]  L. Novotný,et al.  Antennas for light , 2011 .

[27]  A. Miroshnichenko All-dielectric optical nanoantennas , 2012, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[28]  M. Albooyeh,et al.  Effective electric and magnetic properties of metasurfaces in transition from crystalline to amorphous state , 2012, 1201.5800.

[29]  R Alcaraz de la Osa,et al.  Directionality in scattering by nanoparticles: Kerker's null-scattering conditions revisited. , 2011, Optics letters.

[30]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[31]  C F Bohren,et al.  Light scattering by an arbitrary particle: a physical reformulation of the coupled dipole method. , 1987, Optics letters.

[32]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.

[33]  Nguyen Thanh Tung,et al.  Left-handed transmission in a simple cut-wire pair structure , 2010 .

[34]  Andrea Alù,et al.  How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem? , 2010 .

[35]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[36]  M. Nieto-Vesperinas,et al.  Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces , 2011, 1104.3363.

[37]  Yasin Ekinci,et al.  Symmetry breaking in a plasmonic metamaterial at optical wavelength. , 2008, Nano letters.

[38]  A. Alú,et al.  Invisibility and Cloaking Based on Scattering Cancellation , 2012, Advanced materials.

[39]  Daniel J Gauthier,et al.  Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film. , 2012, Optics express.

[40]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[41]  N. Engheta,et al.  Cloaking a sensor. , 2009, Physical review letters.

[42]  D. Heitmann,et al.  SURFACE-PLASMON-ENHANCED TRANSMISSION THROUGH METALLIC GRATINGS , 1998 .

[43]  C. Manolatou,et al.  Subwavelength Nanopatch Cavities for Semiconductor Plasmon Lasers , 2007, IEEE Journal of Quantum Electronics.

[44]  Nicolas Bonod,et al.  Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. , 2012, Optics express.

[45]  Lei Zhang,et al.  Negative Index Materials Using Simple Short Wire Pairs , 2006 .

[46]  A. Kildishev,et al.  Direct measurement of group delay dispersion in metamagnetics for ultrafast pulse shaping. , 2012, Optics express.

[47]  David R. Smith,et al.  Nonlinear magnetoelectric metamaterials: Analysis and homogenization via a microscopic coupled-mode theory , 2012 .

[48]  Yang Li,et al.  Angle- and spectral-dependent light scattering from plasmonic nanocups. , 2011, ACS nano.

[49]  Peter Nordlander,et al.  Unidirectional broadband light emission from supported plasmonic nanowires. , 2011, Nano letters.

[50]  T. Pakizeh Unidirectional radiation of a magnetic dipole coupled to an ultracompact nanoantenna at visible wavelengths , 2012 .

[51]  Wenshan Cai,et al.  Metamagnetics with rainbow colors. , 2007, Optics express.

[52]  Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna. , 2011, Optics letters.

[53]  F. Moreno,et al.  Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities , 2007 .

[54]  J. Sáenz,et al.  Optical forces on small magnetodielectric particles. , 2010, Optics express.

[55]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[56]  S. Burokur,et al.  Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index , 2009 .

[57]  T. Pakizeh,et al.  Color-switched directional ultracompact optical nanoantennas , 2012 .

[58]  M. Käll,et al.  Unidirectional ultracompact optical nanoantennas. , 2009, Nano letters.

[59]  Mikael Käll,et al.  Mode-specific directional emission from hybridized particle-on-a-film plasmons. , 2011, Optics express.