Chapter 4 Evolutionary Algorithms In Ironmaking Applications

[1]  Jong-In Park,et al.  Development of the Burden Distribution and Gas Flow Model in the Blast Furnace Shaft , 2011 .

[2]  Brahma Deo,et al.  Optimal Operating Conditions for the Primary End of an Integrated Steel Plant: Genetic Adaptive Search and Classical Techniques , 1998 .

[3]  Frank Pettersson,et al.  Genetic Programming Evolved through Bi-Objective Genetic Algorithms Applied to a Blast Furnace , 2013 .

[4]  Nirupam Chakraborti,et al.  Re-evaluation of the optimal operating conditions for the primary end of an integrated steel plant using multi-objective genetic algorithms and nash equilibrium , 2006 .

[5]  P. K. Sen,et al.  Approach for Minimizing Operating Blast Furnace Carbon Rate Using Carbon-Direct Reduction (C-DRR) Diagram , 2012, Metallurgical and Materials Transactions B.

[6]  Henrik Saxén,et al.  Particle Flow and Behavior at Bell‐Less Charging of the Blast Furnace , 2013 .

[7]  Tamoghna Mitra,et al.  Model for Fast Evaluation of Charging Programs in the Blast Furnace , 2014, Metallurgical and Materials Transactions B.

[8]  Tibor Fabian,et al.  A Linear Programming Model of Integrated Iron and Steel Production , 1958 .

[9]  Nirupam Chakraborti,et al.  Tight-binding calculations of Si-H clusters using genetic algorithms and related techniques: Studies using differential evolution , 2001 .

[10]  Shinroku Matsuzaki,et al.  Validation of Particle Size Segregation of Sintered Ore during Flowing through Laboratory-scale Chute by Discrete Element Method , 2008 .

[11]  Surendra Kumar,et al.  Heat Transfer Analysis and Estimation of Refractory Wear in an Iron Blast Furnace Hearth Using Finite Element Method , 2005 .

[12]  F. Pettersson,et al.  Evolving Nonlinear Time-Series Models of the Hot Metal Silicon Content in the Blast Furnace , 2007 .

[13]  Henrik Saxén,et al.  Model of the state of the blast furnace hearth , 2000 .

[14]  H. Akaike A new look at the statistical model identification , 1974 .

[15]  Patrick Siarry,et al.  Applications of Metaheuristics in Process Engineering , 2014, Springer International Publishing.

[16]  Arya K. Bhattacharya,et al.  Estimation of operating blast furnace reactor invisible interior surface using Differential Evolution , 2013, Appl. Soft Comput..

[17]  Andreas Johnsson,et al.  A model on CO2 emission reduction in integrated steelmaking by optimization methods , 2008 .

[18]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[19]  Hiroshi Nogami,et al.  Multi-dimensional transient mathematical simulator of blast furnace process based on multi-fluid and kinetic theories , 2005, Comput. Chem. Eng..

[20]  Shin-ya Kitamura,et al.  Analysis on Material and Energy Balances of Ironmaking Systems on Blast Furnace Operations with Metallic Charging, Top Gas Recycling and Natural Gas Injection , 2006 .

[21]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[22]  Marcela B. Goldschmit,et al.  Inverse geometry heat transfer problem based on a radial basis functions geometry representation , 2006 .

[23]  Zhihong Li,et al.  Comparison of CO2 emission between COREX and blast furnace iron-making system. , 2009, Journal of environmental sciences.

[24]  Frank Pettersson,et al.  Genetic Algorithm-Based Multicriteria Optimization of Ironmaking in the Blast Furnace , 2009 .

[25]  F. Pettersson,et al.  Evolutionary Neural Network Modeling of Blast Furnace Burden Distribution , 2003 .

[26]  HENRIK SAXE´N,et al.  MODEL FOR BURDEN DISTRIBUTION TRACKING IN THE BLAST FURNACE , 2004 .

[27]  Frank Pettersson,et al.  A Genetic Algorithm Evolving Charging Programs in the Ironmaking Blast Furnace , 2005 .

[28]  Frank Pettersson,et al.  A genetic algorithms based multi-objective neural net applied to noisy blast furnace data , 2007, Appl. Soft Comput..

[29]  Xiaobo Yu,et al.  Circumferential burden distribution behaviors at bell-less top blast furnace with parallel type hoppers , 2011 .

[30]  M. Sefrioui,et al.  Nash genetic algorithms: examples and applications , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[31]  Marco Vannucci,et al.  Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork , 2014 .

[32]  Chuanhou Gao,et al.  Data-Driven Time Discrete Models for Dynamic Prediction of the Hot Metal Silicon Content in the Blast Furnace—A Review , 2013, IEEE Transactions on Industrial Informatics.

[33]  J. Geiseler,et al.  Use of steelworks slag in Europe , 1996 .

[34]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[35]  Nirupam Chakraborti,et al.  Genetic algorithms based multi-objective optimization of an iron making rotary kiln , 2009 .

[36]  Mikko Helle,et al.  Multiobjective Optimization of Top Gas Recycling Conditions in the Blast Furnace by Genetic Algorithms , 2011 .

[37]  Nirupam Chakraborti,et al.  Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives , 2013, Appl. Soft Comput..

[38]  Zhengqing Yun,et al.  Comparative study of genetic programming vs. neural networks for the classification of buried objects , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[39]  Shin Kikuchi,et al.  Recent Progress on Advanced Blast Furnace Mathematical Models Based on Discrete Method , 2014 .

[40]  Nirupam Chakraborti,et al.  Analyzing Fe–Zn system using molecular dynamics, evolutionary neural nets and multi-objective genetic algorithms , 2009 .

[41]  Rajesh Jha,et al.  Multi‐Objective Genetic Algorithms and Genetic Programming Models for Minimizing Input Carbon Rates in a Blast Furnace Compared with a Conventional Analytic Approach , 2014 .

[42]  Koen Meijer,et al.  Developments in Alternative Ironmaking , 2013, Transactions of the Indian Institute of Metals.