Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA

With the aim of developing a DNA sequencing methodology, we theoretically examine the feasibility of using nanoplasmonics to control the translocation of a DNA molecule through a solid-state nanopore and to read off sequence information using surface-enhanced Raman spectroscopy. Using molecular dynamics simulations, we show that high-intensity optical hot spots produced by a metallic nanostructure can arrest DNA translocation through a solid-state nanopore, thus providing a physical knob for controlling the DNA speed. Switching the plasmonic field on and off can displace the DNA molecule in discrete steps, sequentially exposing neighboring fragments of a DNA molecule to the pore as well as to the plasmonic hot spot. Surface-enhanced Raman scattering from the exposed DNA fragments contains information about their nucleotide composition, possibly allowing the identification of the nucleotide sequence of a DNA molecule transported through the hot spot. The principles of plasmonic nanopore sequencing can be extended to detection of DNA modifications and RNA characterization.

[1]  S. Maier,et al.  Precise attoliter temperature control of nanopore sensors using a nanoplasmonic bullseye. , 2015, Nano letters.

[2]  Alexander Y. Grosberg,et al.  Electrostatic Focusing of Unlabeled DNA into Nanoscale Pores using a Salt Gradient , 2009, Nature nanotechnology.

[3]  K. Schulten,et al.  Sizing DNA using a nanometer-diameter pore. , 2004, Biophysical journal.

[4]  P. Barber Absorption and scattering of light by small particles , 1984 .

[5]  K. Schulten,et al.  Microscopic Kinetics of DNA Translocation through synthetic nanopores. , 2004, Biophysical journal.

[6]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  C. Dekker,et al.  Plasmonic nanopore for electrical profiling of optical intensity landscapes. , 2013, Nano letters.

[8]  Sebastian J Maerkl,et al.  Integration of plasmonic trapping in a microfluidic environment. , 2009, Optics express.

[9]  M. Ishikawa,et al.  Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method , 2003 .

[10]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[11]  Luke P. Lee,et al.  Graphene nanopore with a self-integrated optical antenna. , 2014, Nano letters.

[12]  A. Aksimentiev,et al.  Conformational Transitions and Stop-and-Go Nanopore Transport of Single Stranded DNA on Charged Graphene , 2014, Nature Communications.

[13]  L. Lagae,et al.  Detection of DNA Bases and Oligonucleotides in Plasmonic Nanoslits Using Fluidic SERS , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Alexandre M. J. J. Bonvin,et al.  3D-DART: a DNA structure modelling server , 2009, Nucleic Acids Res..

[15]  Nahid N. Jetha,et al.  Single-molecule bonds characterized by solid-state nanopore force spectroscopy. , 2009, ACS nano.

[16]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[17]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[18]  D. Case,et al.  Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations , 2001 .

[19]  K. Saha,et al.  DNA base-specific modulation of $\mu$A transverse edge currents through a metallic graphene nanoribbon with a nanopore , 2012 .

[20]  Jung-Il Jin,et al.  Optical, electro-optic and optoelectronic properties of natural and chemically modified DNAs , 2012 .

[21]  Andreas B. Dahlin,et al.  Sensing applications based on plasmonic nanopores: The hole story. , 2015, The Analyst.

[22]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[23]  M. Drndić,et al.  DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore. , 2011, Nano letters.

[24]  Theodore D. Moustakas,et al.  Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores , 2013, Nature nanotechnology.

[25]  Lih Y. Lin,et al.  Large dielectrophoresis force and torque induced by localized surface plasmon resonance of Au nanoparticle array. , 2007, Optics letters.

[26]  J. Schloss,et al.  How to get genomes at one ten-thousandth the cost , 2008, Nature Biotechnology.

[27]  Meni Wanunu,et al.  DNA translocation governed by interactions with solid-state nanopores. , 2008, Biophysical journal.

[28]  Hongbo Peng,et al.  Reverse DNA translocation through a solid-state nanopore by magnetic tweezers , 2009, Nanotechnology.

[29]  Aleksei Aksimentiev,et al.  Slowing down DNA translocation through a nanopore in lithium chloride. , 2012, Nano letters.

[30]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[31]  K. Shepard,et al.  Integrated nanopore sensing platform with sub-microsecond temporal resolution , 2012, Nature Methods.

[32]  Kishan Dholakia,et al.  Extended organization of colloidal microparticles by surface plasmon polariton excitation , 2006 .

[33]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[34]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[35]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[36]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[37]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[38]  K. Schulten,et al.  Genetically engineered gold-binding polypeptides: structure prediction and molecular dynamics , 2002, Journal of biomaterials science. Polymer edition.

[39]  J. Reiner,et al.  Temperature sculpting in yoctoliter volumes. , 2013, Journal of the American Chemical Society.

[40]  Aleksei Aksimentiev,et al.  Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix , 2010, Nanotechnology.

[41]  Aleksei Aksimentiev,et al.  DNA base-calling from a nanopore using a Viterbi algorithm. , 2012, Biophysical journal.

[42]  S. Maier,et al.  Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores. , 2013, Nano letters.

[43]  Reuven Gordon,et al.  Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. , 2011, Nano letters.

[44]  Harald Kneipp,et al.  Single Molecule Raman Scattering , 2006, Applied spectroscopy.

[45]  Peter Nordlander,et al.  Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method , 2004 .

[46]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[47]  Jejoong Yoo,et al.  Improved Parametrization of Li+, Na+, K+, and Mg2+ Ions for All-Atom Molecular Dynamics Simulations of Nucleic Acid Systems , 2012 .

[48]  M. Ventra,et al.  Colloquium: Physical approaches to DNA sequencing and detection , 2007, 0708.2724.

[49]  T. Ha,et al.  A Coarse-Grained Model of Unstructured Single-Stranded DNA Derived from Atomistic Simulation and Single-Molecule Experiment , 2014, Journal of chemical theory and computation.

[50]  Zhiping Weng,et al.  Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. , 2010, Nano letters.

[51]  A. Aksimentiev,et al.  Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores. , 2013, ACS nano.

[52]  Aleksei Aksimentiev,et al.  Assessing graphene nanopores for sequencing DNA. , 2012, Nano letters.

[53]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[54]  Mirna Mihovilovic Skanata,et al.  Entropic cages for trapping DNA near a nanopore , 2015, Nature Communications.

[55]  P. Etchegoin,et al.  Quantifying SERS enhancements , 2013 .

[56]  A. Aksimentiev,et al.  Modeling thermophoretic effects in solid-state nanopores , 2014, Journal of computational electronics.

[57]  U. Keyser Controlling molecular transport through nanopores , 2011, Journal of The Royal Society Interface.

[58]  Ramasamy Manoharan,et al.  Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS) , 1998 .

[59]  Gustavo Stolovitzky,et al.  Fixed-Gap Tunnel Junction for Reading DNA Nucleotides , 2014, ACS nano.

[60]  J. Joanny,et al.  Fast DNA translocation through a solid-state nanopore. , 2004, Nano letters.

[61]  C. Dekker,et al.  DNA Translocations through Solid-State Plasmonic Nanopores , 2014, Nano letters.

[62]  Cees Dekker,et al.  Direct force measurements on DNA in a solid-state nanopore , 2006 .

[63]  Jay Shendure,et al.  Decoding long nanopore sequencing reads of natural DNA , 2014, Nature Biotechnology.

[64]  A. Aksimentiev,et al.  Exploring transmembrane transport through α -hemolysin with grid-steered molecular dynamics , 2007 .

[65]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[66]  K. Schulten,et al.  Water-silica force field for simulating nanodevices. , 2006, The journal of physical chemistry. B.

[67]  N H Dekker,et al.  Noise in solid-state nanopores , 2008, Proceedings of the National Academy of Sciences.

[68]  G. Groeseneken,et al.  Photoresistance Switching of Plasmonic Nanopores , 2014, Nano letters.

[69]  L. Lagae,et al.  Direct evidence of high spatial localization of hot spots in surface-enhanced Raman scattering. , 2009, Angewandte Chemie.

[70]  Gustavo Stolovitzky,et al.  Base-by-base ratcheting of single stranded DNA through a solid-state nanopore. , 2010, Physical review letters.

[71]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .