Bayesian inference in a sample selection model

This paper develops methods of Bayesian inference in a sample selection model. The main feature of this model is that the outcome variable is only partially observed. We first present a Gibbs sampling algorithm for a model in which the selection and outcome errors are normally distributed. The algorithm is then extended to analyze models that are characterized by nonnormality. Specifically, we use a Dirichlet process prior and model the distribution of the unobservables as a mixture of normal distributions with a random number of components. The posterior distribution in this model can simultaneously detect the presence of selection effects and departures from normality. Our methods are illustrated using some simulated data and an abstract from the RAND health insurance experiment.

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  L. Wasserman,et al.  Practical Bayesian Density Estimation Using Mixtures of Normals , 1997 .

[3]  R. Olsen,et al.  Distributional Tests for Selectivity Bias and a More Robust Likelihood Estimator , 1982 .

[4]  J. Powell,et al.  Nonparametric and Semiparametric Methods in Econometrics and Statistics , 1993 .

[5]  Siddhartha Chib,et al.  Estimation of Semiparametric Models in the Presence of Endogeneity and Sample Selection , 2009 .

[6]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[7]  Pravin K. Trivedi,et al.  Bayesian analysis of a self-selection model with multiple outcomes using simulation-based estimation: an application to the demand for healthcare , 2003 .

[8]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[9]  Reuben Gronau,et al.  Wage Comparisons--A Selectivity Bias , 1974 .

[10]  Lung-fei Lee Some Approaches to the Correction of Selectivity Bias , 1982 .

[11]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[12]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[13]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[14]  Lung-fei Lee,et al.  Semiparametric two-stage estimation of sample selection models subject to Tobit-type selection rules , 1994 .

[15]  T. Mroz,et al.  The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions , 1987 .

[16]  B. Inder,et al.  Parameter estimation for a discrete-response model with double rules of sample selection: A Bayesian approach , 2012 .

[17]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[18]  C. Manski Identification of Binary Response Models , 1988 .

[19]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[20]  J. Heckman Sample selection bias as a specification error , 1979 .

[21]  James O. Berger,et al.  Robust Bayesian analysis of selection models , 1998 .

[22]  Ruud H Koning,et al.  Testing the Normality Assumption in the Sample Selection Model With an Application to Travel Demand , 2000 .

[23]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[24]  Partha Deb,et al.  The structure of demand for health care: latent class versus two-part models. , 2002, Journal of health economics.

[25]  James O. Berger,et al.  Semiparametric Bayesian Analysis of Selection Models , 2001 .

[26]  Dale J. Poirier,et al.  Learning about the across-regime correlation in switching regression models , 1997 .

[27]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[28]  Marcia M. A. Schafgans,et al.  Semiparametric Estimation of a Sample Selection Model , 1996 .

[29]  H. Teicher Identifiability of Finite Mixtures , 1963 .

[30]  Peter E. Rossi,et al.  An exact likelihood analysis of the multinomial probit model , 1994 .

[31]  J. Heckman Shadow prices, market wages, and labor supply , 1974 .

[32]  A. Gallant,et al.  Semi-nonparametric Maximum Likelihood Estimation , 1987 .

[33]  Shihti Yu,et al.  On the choice between sample selection and two-part models , 1996 .

[34]  Li Kai,et al.  Bayesian inference in a simultaneous equation model with limited dependent variables , 1998 .

[35]  Eric R. Ziegel,et al.  Practical Nonparametric and Semiparametric Bayesian Statistics , 1998, Technometrics.

[36]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[37]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[38]  W. Michael Conklin,et al.  Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.

[39]  R. Nelsen An Introduction to Copulas , 1998 .

[40]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[41]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[42]  F. Vella Estimating Models with Sample Selection Bias: A Survey , 1998 .

[43]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[44]  Peter E. Rossi,et al.  A Bayesian analysis of the multinomial probit model with fully identified parameters , 2000 .

[45]  Willard G. Manning,et al.  Monte Carlo evidence on the choice between sample selection and two-part models , 1987 .

[46]  Jeffrey M. Woodbridge Econometric Analysis of Cross Section and Panel Data , 2002 .

[47]  J. G. Cragg Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods , 1971 .

[48]  Steven N. MacEachern,et al.  Computational Methods for Mixture of Dirichlet Process Models , 1998 .

[49]  Edward C. Norton,et al.  Choosing Between and Interpreting the Heckit and Two-Part Models for Corner Solutions , 2003, Health Services and Outcomes Research Methodology.

[50]  H. Huang,et al.  Bayesian analysis of the SUR Tobit model , 2001 .

[51]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[52]  M. J. Bayarri,et al.  Bayesian analysis of selection models , 1987 .

[53]  Peter E. Rossi,et al.  A Non-Parametric Bayesian Approach to the Instrumental Variable Problem , 2006 .

[54]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[55]  J. Powell,et al.  Semiparametric estimation of censored selection models with a nonparametric selection mechanism , 1993 .

[56]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[57]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[58]  Fernando A. Quintana,et al.  Nonparametric Bayesian data analysis , 2004 .

[59]  Michael A. West,et al.  Computing Nonparametric Hierarchical Models , 1998 .

[60]  Michael A. West,et al.  Hierarchical priors and mixture models, with applications in regression and density estimation , 2006 .

[61]  C. Morris,et al.  A Comparison of Alternative Models for the Demand for Medical Care , 1983 .

[62]  Whitney K. Newey,et al.  Two-Step Series Estimation of Sample Selection Models , 2009 .

[63]  Christian Hennig,et al.  Identifiablity of Models for Clusterwise Linear Regression , 2000, J. Classif..

[64]  J. Geweke,et al.  Contemporary Bayesian Econometrics and Statistics , 2005 .

[65]  Sylvia Frühwirth-Schnatter,et al.  Finite Mixture and Markov Switching Models , 2006 .