GDAP2 mutations implicate susceptibility to cellular stress in a new form of cerebellar ataxia

Eidhofet al. report a new subtype of autosomal recessive cerebellar ataxia caused by mutations inGDAP2, and show thatGdap2 knockdown inDrosophila recapitulates locomotor dysfunction and shortened lifespan. Susceptibility to cellular stress in theGdap2 model suggests altered stress responses as a pathological mechanism.

[1]  A. Schenck,et al.  High-throughput Analysis of Locomotor Behavior in the Drosophila Island Assay , 2017, Journal of visualized experiments : JoVE.

[2]  H. Jasper,et al.  PGAM5 promotes lasting FoxO activation after developmental mitochondrial stress and extends lifespan in Drosophila , 2017, eLife.

[3]  Nancy T. Malintan,et al.  Mutations in Membrin/GOSR2 Reveal Stringent Secretory Pathway Demands of Dendritic Growth and Synaptic Integrity , 2017, bioRxiv.

[4]  J. Taylor,et al.  Regulatory Role of RNA Chaperone TDP-43 for RNA Misfolding and Repeat-Associated Translation in SCA31 , 2017, Neuron.

[5]  B. Pineda,et al.  Kynurenine pathway metabolites and enzymes involved in redox reactions , 2017, Neuropharmacology.

[6]  Alessandro Didonna,et al.  Advances in Sequencing Technologies for Understanding Hereditary Ataxias: A Review. , 2016, JAMA neurology.

[7]  Sarah C. Ayling,et al.  The Ensembl gene annotation system , 2016, Database J. Biol. Databases Curation.

[8]  C. Gilissen,et al.  Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene–disease associations and unanticipated rare disorders , 2016, European Journal of Human Genetics.

[9]  D. Timmann,et al.  SYNE1 ataxia is a common recessive ataxia with major non-cerebellar features: a large multi-centre study. , 2016, Brain : a journal of neurology.

[10]  K. Harvey,et al.  A Drosophila RNAi library modulates Hippo pathway-dependent tissue growth , 2016, Nature Communications.

[11]  C. Webber,et al.  Systematic Phenomics Analysis Deconvolutes Genes Mutated in Intellectual Disability into Biologically Coherent Modules. , 2016, American journal of human genetics.

[12]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[13]  Xiaowu Gai,et al.  Innovative Genomic Collaboration Using the GENESIS (GEM.app) Platform , 2015, Human mutation.

[14]  Y. Hérault,et al.  Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration , 2015, Human molecular genetics.

[15]  H. Orr,et al.  Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability , 2015, The Journal of Neuroscience.

[16]  Janna H. Neltner,et al.  Primary age-related tauopathy (PART): a common pathology associated with human aging , 2014, Acta Neuropathologica.

[17]  C. J. Smeets,et al.  Cerebellar ataxia and functional genomics: Identifying the routes to cerebellar neurodegeneration. , 2014, Biochimica et biophysica acta.

[18]  J. Axelrod,et al.  prickle modulates microtubule polarity and axonal transport to ameliorate seizures in flies , 2014, Proceedings of the National Academy of Sciences.

[19]  A. Leung Poly(ADP-ribose): An organizer of cellular architecture , 2014, The Journal of cell biology.

[20]  S. Miyano,et al.  Systems biology analysis of Drosophila in vivo screen data elucidates core networks for DNA damage repair in SCA1. , 2014, Human molecular genetics.

[21]  C. Kyriacou,et al.  A Drosophila RNAi collection is subject to dominant phenotypic effects , 2014, Nature Methods.

[22]  Alex Bateman,et al.  TreeFam v9: a new website, more species and orthology-on-the-fly , 2013, Nucleic Acids Res..

[23]  Jeffrey D. Stumpf,et al.  Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia. , 2014, DNA repair.

[24]  Christian Gilissen,et al.  A Post‐Hoc Comparison of the Utility of Sanger Sequencing and Exome Sequencing for the Diagnosis of Heterogeneous Diseases , 2013, Human mutation.

[25]  Tobias M. Rasse,et al.  The Kinesin-3, Unc-104 Regulates Dendrite Morphogenesis and Synaptic Development in Drosophila , 2013, Genetics.

[26]  Derek J Van Booven,et al.  GEnomes Management Application (GEM.app): A New Software Tool for Large‐Scale Collaborative Genome Analysis , 2013, Human mutation.

[27]  D. Wassarman,et al.  The Innate Immune Response Transcription Factor Relish Is Necessary for Neurodegeneration in a Drosophila Model of Ataxia-Telangiectasia , 2013, Genetics.

[28]  M. Buschbeck,et al.  Macro domains as metabolite sensors on chromatin , 2013, Cellular and Molecular Life Sciences.

[29]  David P. Leader,et al.  FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster , 2012, Nucleic Acids Res..

[30]  C. Klämbt,et al.  Kinesin Heavy Chain Function in Drosophila Glial Cells Controls Neuronal Activity , 2012, The Journal of Neuroscience.

[31]  M. Koenig,et al.  The autosomal recessive cerebellar ataxias. , 2012, The New England journal of medicine.

[32]  J. Trojanowski,et al.  A harmonized classification system for FTLD-TDP pathology , 2011, Acta Neuropathologica.

[33]  Xiaobing Fu,et al.  The macro domain protein family: Structure, functions, and their potential therapeutic implications , 2011, Mutation Research/Reviews in Mutation Research.

[34]  Charles Duyckaerts,et al.  National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach , 2011, Acta Neuropathologica.

[35]  F. Cremers,et al.  CDK19 is disrupted in a female patient with bilateral congenital retinal folds, microcephaly and mild mental retardation , 2010, Human Genetics.

[36]  L. Ranum,et al.  Spectrin mutations that cause spinocerebellar ataxia type 5 impair axonal transport and induce neurodegeneration in Drosophila , 2010, The Journal of cell biology.

[37]  V. Bankaitis,et al.  The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. , 2010, Trends in biochemical sciences.

[38]  M. Gerstein,et al.  Unlocking the secrets of the genome , 2009, Nature.

[39]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.

[40]  T. Ahola,et al.  Differential Activities of Cellular and Viral Macro Domain Proteins in Binding of ADP-Ribose Metabolites , 2008, Journal of Molecular Biology.

[41]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[42]  T. Mustelin,et al.  The lipid-binding SEC14 domain. , 2007, Biochimica et biophysica acta.

[43]  Manisha N. Patel,et al.  Mitochondria Are a Major Source of Paraquat-induced Reactive Oxygen Species Production in the Brain* , 2007, Journal of Biological Chemistry.

[44]  A. Barabasi,et al.  A Protein–Protein Interaction Network for Human Inherited Ataxias and Disorders of Purkinje Cell Degeneration , 2006, Cell.

[45]  M. Bycroft,et al.  The macro domain is an ADP‐ribose binding module , 2004, The EMBO journal.

[46]  G. Tear,et al.  glaikit Is Essential for the Formation of Epithelial Polarity and Neuronal Development , 2004, Current Biology.

[47]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[48]  V. Sheffield,et al.  Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse , 2003, Nature Genetics.

[49]  Rachel J Parsons,et al.  Ligand specificity in the CRAL-TRIO protein family. , 2003, Biochemistry.

[50]  T Klockgether,et al.  The natural history of degenerative ataxia: a retrospective study in 466 patients. , 1998, Brain : a journal of neurology.

[51]  J. Millichap Ataxia with Vitamin E Deficiency , 1997 .

[52]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.