Ultrathin high-temperature ferromagnetic rare-earth films: GdScGe and GdScSi monolayers

Two-dimensional (2D) ferromagnetism with robust room-temperature ferromagnetism has sparked intense interest for future miniature information storage devices. However, most 2D ferromagnetic materials have a low Curie temperature. Here, by using density functional theory, two rare-earth monolayers, the GdScSi monolayer and the GdScGe monolayer, were predicted, in which these two monolayers exhibit ferromagnetic orders with large magnetic moments of approximately 7 μ B/Gd. Monte Carlo simulations predict Curie temperatures of approximately 470 K and 495 K for the 2D GdScSi monolayer and the GdScGe monolayer, respectively. The spin band calculations show that they are metal. In addition, these two monolayers exhibit dynamical, mechanical, and thermal stabilities. The combination of these novel magnetic properties makes these 2D ferromagnetic crystals promising candidates for high-efficiency spintronic applications.

[1]  Qingquan Liu,et al.  Two-dimensional Cr-based ferromagnetic semiconductor: Theoretical simulations and design , 2022, Frontiers in Physics.

[2]  Xiuyun Zhang,et al.  TM2B3 monolayers: Intrinsic anti-ferromagnetism and Dirac nodal line semimetal , 2022, Applied Physics Letters.

[3]  Maoshuai He,et al.  TMB2C (TM = Ti, V): 2D transition metal borocarbide monolayer with intriguing electronic, magnetic and electrochemical properties , 2022, Applied Surface Science.

[4]  Bin Wang,et al.  Cr2XTe4 (X = Si, Ge) monolayers: a new type of two-dimensional high-T C Ising ferromagnetic semiconductors with a large magnetic anisotropy , 2022, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  Peng-Fei Liu,et al.  Strain-driven valley states and phase transitions in Janus VSiGeN4 monolayer , 2022, Applied Physics Letters.

[6]  Jun Chen,et al.  Gadolinium Halide Monolayers: A Fertile Family of Two-Dimensional 4f Magnets , 2022, ACS Applied Electronic Materials.

[7]  D. Singh,et al.  Ta4SiTe4 : A possible one-dimensional topological insulator , 2022, Physical Review B.

[8]  Y. Ang,et al.  Strain effects on the topological and valley properties of the Janus monolayer VSiGeN4 , 2022, Physical Review B.

[9]  S. Dong,et al.  Structural reconstruction and anisotropic conductance in 4f-ferromagnetic monolayer , 2022, Materials Today Physics.

[10]  Qiao Chen,et al.  Monolayer CeI2 : An intrinsic room-temperature ferrovalley semiconductor , 2022, Physical Review B.

[11]  Zhi-Yong Wang,et al.  Monolayer gadolinium halides, GdX2 (X = F, Cl, Br): intrinsic ferrovalley materials with spontaneous spin and valley polarizations. , 2022, Physical chemistry chemical physics : PCCP.

[12]  Xiaodong Xu,et al.  Reversible strain-induced magnetic phase transition in a van der Waals magnet , 2022, Nature Nanotechnology.

[13]  Zhenxiang Cheng,et al.  Ni(NCS)2 monolayer: a robust bipolar magnetic semiconductor. , 2021, Nanoscale.

[14]  Peng-Fei Liu,et al.  Strain-tunable phase transition and doping-induced magnetism in iodinene , 2021, Applied Physics Letters.

[15]  G. Qin,et al.  Two-dimensional ferromagnetic semiconductors of rare-earth monolayer GdX2 (X = Cl, Br, I) with large perpendicular magnetic anisotropy and high Curie temperature , 2021, Materials Today Physics.

[16]  Jinlan Wang,et al.  A universal framework for metropolis Monte Carlo simulation of magnetic Curie temperature , 2021 .

[17]  Yungeng Zhang,et al.  B2S3 monolayer: a two-dimensional direct-gap semiconductor with tunable band-gap and high carrier mobility , 2021, Nanotechnology.

[18]  Ke Yang,et al.  Triaxial magnetic anisotropy in the two-dimensional ferromagnetic semiconductor CrSBr , 2021, Physical Review B.

[19]  C. Nuckolls,et al.  Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. , 2020, Nano letters.

[20]  Yu Jia,et al.  Ferromagnetic Weyl Fermions in Two-Dimensional Layered Electride Gd_{2}C. , 2020, Physical review letters.

[21]  Jinlan Wang,et al.  Prediction of a two-dimensional high-TC f-electron ferromagnetic semiconductor , 2020, Materials Horizons.

[22]  J. Luxa,et al.  Chemistry of Germanene: Surface Modification of Germanane Using Alkyl Halides. , 2020, ACS nano.

[23]  Shengbai Zhang,et al.  Bipolar Doping by Intrinsic Defects and Magnetic Phase Instability in Monolayer CrI3 , 2020 .

[24]  Hyung-jun Kim,et al.  Controlling the magnetic anisotropy of van der Waals ferromagnet Fe3GeTe2 through hole doping. , 2019, Nano letters.

[25]  Jinlan Wang,et al.  Auxetic B4N Monolayer: A promising 2D material with In-Plane Negative Poisson's Ratio and Large Anisotropic Mechanics. , 2019, ACS applied materials & interfaces.

[26]  Chaorong Li,et al.  Tunable band gap and enhanced ferromagnetism by surface adsorption in monolayer Cr2Ge2Te6 , 2019, Physical Review B.

[27]  M. Bouhassoune,et al.  Defect-implantation for the all-electrical detection of non-collinear spin-textures , 2019, Nature Communications.

[28]  Jinlan Wang,et al.  MnX (X = P, As) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. , 2019, Nanoscale.

[29]  T. Arias,et al.  Ab Initio Mismatched Interface Theory of Graphene on α-RuCl_{3}: Doping and Magnetism. , 2019, Physical review letters.

[30]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[31]  Ying Dai,et al.  Single-Layer Ag2S: A Two-Dimensional Bidirectional Auxetic Semiconductor. , 2019, Nano letters.

[32]  T. Zhai,et al.  Doping engineering and functionalization of two-dimensional metal chalcogenides. , 2019, Nanoscale horizons.

[33]  Jinlan Wang,et al.  High Curie-temperature intrinsic ferromagnetism and hole doping-induced half-metallicity in two-dimensional scandium chlorine monolayers. , 2018, Nanoscale horizons.

[34]  Jinlan Wang,et al.  Transition-Metal Dihydride Monolayers: A New Family of Two-Dimensional Ferromagnetic Materials with Intrinsic Room-Temperature Half-Metallicity. , 2018, The journal of physical chemistry letters.

[35]  Jijun Zhao,et al.  MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature. , 2018, Nanoscale Horizons.

[36]  Jinlan Wang,et al.  Surface Vacancy-Induced Switchable Electric Polarization and Enhanced Ferromagnetism in Monolayer Metal Trihalides. , 2018, Nano letters.

[37]  F. Prinz,et al.  Topological nodal-line semimetals in ferromagnetic rare-earth-metal monohalides , 2018, Physical Review B.

[38]  Dongkyu Lee,et al.  Carrier- and strain-tunable intrinsic magnetism in two-dimensional MAX3 transition metal chalcogenides , 2017, Physical Review B.

[39]  X. Kong,et al.  Layer and doping tunable ferromagnetic order in two-dimensional CrS2 layers , 2017, Physical Review B.

[40]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[41]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[42]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[43]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[44]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[45]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[46]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[47]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[48]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[50]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[51]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[52]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[53]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[54]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[55]  Tengfei Cao,et al.  Tunable Magnetic Order in Two-dimensional Layered GdGe2 , 2022, Journal of Materials Chemistry C.