Multi-State Models with Error-Prone Data

Multi-state stochastic models are closely related to survival and longitudinal data analysis. They may be used to describe survival data from a perspective different from what is discussed in Chapter 3 They also provide a useful framework for analyzing longitudinal data when interest lies in dynamic aspects of the underlying process.

[1]  Dylan S. Small,et al.  Marginal regression analysis of longitudinal data with time‐dependent covariates: a generalized method‐of‐moments approach , 2007 .

[2]  F. Speizer,et al.  The use of an autoregressive model for the analysis of longitudinal data in epidemiologic studies. , 1985, Statistics in medicine.

[3]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[4]  D. Pfeffermann,et al.  The estimation of gross flows in the presence of measurement error using auxiliary variables , 1998 .

[5]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[6]  Scott L. Zeger,et al.  Marginalized Multilevel Models and Likelihood Inference , 2000 .

[7]  Rhonda J. Rosychuk,et al.  Parameter estimation in a model for misclassified Markov data - a Bayesian approach , 2009, Comput. Stat. Data Anal..

[8]  Richard J Cook,et al.  A generalized mover-stayer model for panel data. , 2002, Biostatistics.

[9]  Simon G. Thompson,et al.  Multistate Markov models for disease progression with classification error , 2003 .

[10]  N. Keiding,et al.  Multi-state models for event history analysis , 2002, Statistical methods in medical research.

[11]  H. Frydman Maximum Likelihood Estimation in the Mover-Stayer Model , 1984 .

[12]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[13]  Christopher H. Schmid An EM Algorithm Fitting First-Order Conditional Autoregressive Models to Longitudinal Data , 1996 .

[14]  Markov Chain Model Selection by Misclassified Model Probabilities , 2007 .

[15]  Paul S. Albert,et al.  Modeling Repeated Measures with Monotonic Ordinal Responses and Misclassification, with Applications to Studying Maturation , 1997 .

[16]  A. Azzalini Logistic regression for autocorrelated data with application to repeated measures , 1994 .

[17]  Carmen Cadarso-Suárez,et al.  Multi-state models for the analysis of time-to-event data , 2009, Statistical methods in medical research.

[18]  H Putter,et al.  Tutorial in biostatistics: competing risks and multi‐state models , 2007, Statistics in medicine.

[19]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[20]  Richard J. Cook,et al.  Statistical Issues in Modeling Chronic Disease in Cohort Studies , 2014 .

[21]  Cheng Hsiao,et al.  Formulation and estimation of dynamic models using panel data , 1982 .

[22]  Feng He,et al.  Analysis of Multi-State Models with Mismeasured Covariates or Misclassified States , 2015 .

[23]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[24]  G A Satten,et al.  Estimating the Extent of Tracking in Interval‐Censored Chain‐Of‐Events Data , 1999, Biometrics.

[25]  Christopher H. Schmid,et al.  Incorporating measurement error in the estimation of autoregressive models for longitudinal data , 1994 .

[26]  P S Albert,et al.  A Mover–Stayer Model for Longitudinal Marker Data , 1999, Biometrics.

[27]  Xihong Lin,et al.  Estimation in Semiparametric Transition Measurement Error Models for Longitudinal Data , 2009, Biometrics.

[28]  H. D. Miller,et al.  The Theory Of Stochastic Processes , 1977, The Mathematical Gazette.

[29]  Alexandre Bureau,et al.  Applications of continuous time hidden Markov models to the study of misclassified disease outcomes , 2003, Statistics in medicine.

[30]  Andrew C Titman,et al.  A general goodness-of-fit test for Markov and hidden Markov models. , 2008, Statistics in medicine.

[31]  B Rosner,et al.  A Bayesian approach to logistic regression models having measurement error following a mixture distribution. , 1993, Statistics in medicine.

[32]  Rhonda J Rosychuk,et al.  Bias correction of two‐state latent Markov process parameter estimates under misclassification , 2003, Statistics in medicine.

[33]  James P. Hughes,et al.  An S-Plus Implementation of Hidden Markov Models in Continuous Time , 2000 .

[34]  Xihong Lin,et al.  Structural Inference in Transition Measurement Error Models for Longitudinal Data , 2006, Biometrics.

[35]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical , 2002 .

[36]  Comparison of smoothing techniques for CD4 data in a Markov model with states defined by CD4: an example on the estimation of the HIV incubation time distribution , 2001, Statistics in medicine.

[37]  Richard J Cook,et al.  A Conditional Markov Model for Clustered Progressive Multistate Processes under Incomplete Observation , 2004, Biometrics.

[38]  Chengcheng Hu,et al.  Joint Modeling of Progression of HIV Resistance Mutations Measured with Uncertainty and Failure Time Data , 2007, Biometrics.

[39]  Patrick J Heagerty,et al.  Marginalized Transition Models and Likelihood Inference for Longitudinal Categorical Data , 2002, Biometrics.

[40]  Andrew C Titman,et al.  Semi‐Markov Models with Phase‐Type Sojourn Distributions , 2010, Biometrics.

[41]  Penelope Vounatsou,et al.  Estimation of infection and recovery rates for highly polymorphic parasites when detectability is imperfect, using hidden Markov models , 2003, Statistics in medicine.

[42]  Ira M. Longini,et al.  The stages of HIV infection: waiting times and infection transmission probabilities , 1989 .

[43]  Richard J. Cook,et al.  Likelihood analysis of joint marginal and conditional models for longitudinal categorical data. , 2009 .

[44]  Raymond J. Carroll,et al.  Conditional scores and optimal scores for generalized linear measurement-error models , 1987 .

[45]  John B Carlin,et al.  Transitions in an imperfectly observed binary variable: depressive symptomatology in adolescents , 2003, Statistics in medicine.

[46]  Lain L. MacDonald,et al.  Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .

[47]  J. Kalbfleisch,et al.  The Analysis of Panel Data under a Markov Assumption , 1985 .

[48]  V T Farewell,et al.  A Pearson‐type goodness‐of‐fit test for stationary and time‐continuous Markov regression models , 2002, Statistics in medicine.

[49]  Feng He,et al.  Analysis of panel data under hidden mover-stayer models. , 2017, Statistics in medicine.

[50]  Andrew C Titman,et al.  Model diagnostics for multi-state models , 2010, Statistical methods in medical research.

[51]  P Hougaard,et al.  Multi-state Models: A Review , 1999, Lifetime data analysis.

[52]  Rhonda J. Rosychuk,et al.  PARAMETER IDENTIFIABILITY ISSUES IN A LATENT MARKOV MODEL FOR MISCLASSIFIED BINARY RESPONSES , 2004 .