Remaining uncertainties in the kinetic mechanism of hydrogen combustion

[1]  Garry L. Schott,et al.  Kinetic Studies of Hydroxyl Radicals in Shock Waves. II. Induction Times in the Hydrogen-Oxygen Reaction , 1958 .

[2]  A. Williams,et al.  Some reactions of hydrogen atoms and simple radicals at high temperatures , 1965 .

[3]  W. Gardiner,et al.  Shock-tube study of the hydrogen-oxygen reaction , 1965 .

[4]  G. B. Skinner,et al.  Ignition Delays of a Hydrogen—Oxygen—Argon Mixture at Relatively Low Temperatures , 1965 .

[5]  W. Gardiner,et al.  Shock‐Tube Study of the Hydrogen—Oxygen Reaction. II. Role of Exchange Initiation , 1966 .

[6]  L. Drummond Shock-initiated exothermic reactions. III. The oxidation of hydrogen , 1967 .

[7]  A. Williams,et al.  Flame structure and flame reaction kinetics - IV. Experimental investigations of a fuel-rich hydrogen+oxygen+nitrogen flame at atmospheric pressure , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  J. Wolfrum,et al.  Absolute measurements of rate coefficients for the reactions of H and O atoms with H2O2 and H2O , 1971 .

[9]  Jozef Peeters,et al.  Reaction mechanisms and rate constants ofelementary steps in methane-oxygen flames , 1973 .

[10]  A. K. Oppenheim,et al.  Dynamics of the exothermic process in combustion , 1975 .

[11]  M. W. Slack,et al.  Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times , 1977 .

[12]  G. Dixon-Lewis,et al.  Kinetic mechanism, structure and properties of premixed flames in hydrogen—oxygen—nitrogen mixtures , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[13]  K. Westberg,et al.  Chemical Kinetic Data Sheets for High‐Temperature Chemical Reactions , 1983 .

[14]  A. K. Oppenheim,et al.  Autoignition in methanehydrogen mixtures , 1984 .

[15]  L. Qiu,et al.  Rate constant of the hydroxyl + perhydroxyl (HO2) reaction from 252 to 420 K , 1984 .

[16]  S. Sander,et al.  Kinetics and mechanism of HO2 and DO2 disproportionations , 1984 .

[17]  C. Law,et al.  On the determination of laminar flame speeds from stretched flames , 1985 .

[18]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[19]  P. Roth,et al.  High temperature rate coefficient for the reaction of O(3P) with H2 obtained by the resonance absorption of O and H atoms , 1987 .

[20]  A. Hayhurst,et al.  Heat release and radical recombination in premixed fuel-lean flames of H2+ O2+ N2. Rate constants for H + OH + M → H2O + M and HO2+ OH → H2O + O2 , 1988 .

[21]  R. B. Klemm,et al.  Rate constant for the reaction of O(3P) with H2 by the flash photolysis—shock tube and flash photolysis—resonance fluorescence techniques; 504K≤T≤2495K , 1988 .

[22]  L. F. Keyser Kinetics of the reaction hydroxyl + hydroperoxo .fwdarw. water + oxygen from 254 to 382 K , 1988 .

[23]  Ulrich Maas,et al.  Ignition processes in hydrogenoxygen mixtures , 1988 .

[24]  James A. Miller,et al.  Mechanism and modeling of nitrogen chemistry in combustion , 1989 .

[25]  Roger Atkinson,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III - gas phase reactions of inorganic halogens , 2006 .

[26]  R. Hanson,et al.  A direct comparison of shock tube photolysis and pyrolysis methods in the determination of the rate coefficient for O+H2→OH+H , 1990 .

[27]  Jürgen Troe,et al.  Shock wave study of the reaction HO2+HO2→H2O2+O2 : Confirmation of a rate constant minimum near 700 K , 1990 .

[28]  Richard A. Yetter,et al.  Flow Reactor Studies of Carbon Monoxide/Hydrogen/ Oxygen Kinetics , 1991 .

[29]  P. Roth,et al.  High-temperature dissociation of oxygen diluted in argon or nitrogen , 1991 .

[30]  Alan Williams,et al.  The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures , 1991 .

[31]  F. Egolfopoulos,et al.  An experimental and computational study of the burning rates of ultra-lean to moderately-rich H2/O2/N2 laminar flames with pressure variations , 1991 .

[32]  P. Patterson,et al.  Rate constants for the reaction, O(3P)+H2O¶OH+OH, over the temperature range 1053 K to 2033 K using two direct techniques , 1991 .

[33]  L. Tseng,et al.  Laminar burning velocities and transition to unstable flames in H2/O2/N2 and C3H8/O2/N2 mixtures☆ , 1992 .

[34]  K. R. Winn,et al.  Kinetic study of the hydrogel + hydrogen reaction from 800 to 1550 K , 1992 .

[35]  Michael J. Pilling,et al.  Evaluated Kinetic Data for Combustion Modelling , 1992 .

[36]  B. Rogg,et al.  Reduced kinetic mechanisms and their numerical treatment I: Wet CO flames , 1993 .

[37]  Raymond W. Walker,et al.  Evaluated kinetic data for combustion modelling supplement I , 1994 .

[38]  Richard A. Yetter,et al.  New results on moist CO oxidation: high pressure, high temperature experiments and comprehensive kinetic modeling , 1994 .

[39]  Chung King Law,et al.  Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique , 1994 .

[40]  Michael J. Pilling,et al.  Summary table of evaluated kinetic data for combustion modeling: Supplement 1 , 1994 .

[41]  R. Hanson,et al.  A shock tube study of the OH + OH → H2O + O reaction , 1994 .

[42]  Tiziano Faravelli,et al.  A wide-range modeling study of n-heptane oxidation , 1995 .

[43]  J. Troe,et al.  Shock wave studies of the reactions HO+H2O2→H2O+HO2 and HO+HO2→H2O+O2 between 930 and 1680 K , 1995 .

[44]  O. Korobeinichev,et al.  Study of the structure of a ten-atmosphere H2-O2-Ar flame using molecular-beam inlet mass-spectrometrometric probing , 1996 .

[45]  B. C. Garrett,et al.  Quantifying the non-RRKM effect in the H + O2 ⇄ OH + O reaction , 1997 .

[46]  Piotr Wolanski,et al.  Finding the markstein number using the measurements of expanding spherical laminar flames , 1997 .

[47]  Kendrick Aung,et al.  Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure , 1997 .

[48]  Peter J. Ashman,et al.  Rate coefficient of H+O2+M→HO2+M (M=H2O, N2, Ar, CO2) , 1998 .

[49]  Kendrick Aung,et al.  Effects of pressure and nitrogen dilution on flame/stretch interactions of laminar premixed H2/O2/N2 flames , 1998 .

[50]  R. Yetter,et al.  Measurement of the rate constant for H+O2+M→HO2+M (M=N2, Ar) using kinetic modeling of the high-pressure H2/O2/NOx reaction , 1998 .

[51]  James A. Miller,et al.  Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor , 1998 .

[52]  Simone Hochgreb,et al.  Hydrogen autoignition at pressures above the second explosion limit (0.6-4.0 MPa) , 1998 .

[53]  Martin J. Brown,et al.  Influence of uncertainties in rate constants on computed burning velocities , 1999 .

[54]  Kinetic Study of OH + OH and OD + OD Reactions , 1999 .

[55]  R. Yetter,et al.  Flow reactor studies and kinetic modeling of the H2/O2 reaction , 1999 .

[56]  A high temperature chemical kinetics study of the O2 dissociation and the O atoms recombination by ARAS , 1999 .

[57]  V. I. Osherov,et al.  Ab initio analysis of the transition states on the lowest triplet H2O2 potential surface , 1999 .

[58]  Hideaki Kobayashi,et al.  Laminar burning velocity of hydrogen-air premixed flames at elevated pressure , 2000 .

[59]  A. Lifshitz,et al.  Non-equilibrium kinetics of bimolecular reactions. Part 7: The puzzle of the H+O2 reaction , 2000 .

[60]  Joe V. Michael,et al.  Initiation in H2/O2: Rate constants for H2+O2→H+HO2 at high temperature , 2000 .

[61]  C. Paillard,et al.  Rate constant for the reaction of O with H2 at high temperature by resonance absorption measurements of O atoms , 2000 .

[62]  Richard A. Yetter,et al.  Simulation and Analysis of Laminar Flow Reactors , 2000 .

[63]  Chung King Law,et al.  Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres , 2000 .

[64]  J. Troe Detailed modeling of the temperature and pressure dependence of the reaction H+O2 (+M)→HO2 (+M) , 2000 .

[65]  J. Warnatz,et al.  The Structure of Laminar Premixed H2-Air Flames at Elevated Pressures , 2000 .

[66]  R. Hanson,et al.  Experimental study and modeling of the reaction H + O2+ M → HO2+ M (M = Ar, N2, H2O) at elevated pressures and temperatures between 1050 and 1250 K , 2001 .

[67]  Gerard M. Faeth,et al.  Flame/stretch interactions of premixed hydrogen-fueled flames: measurements and predictions , 2001 .

[68]  C. Paillard,et al.  A High Temperature Chemical Kinetics Study of the Reaction: OH+Ar = H+O+Ar by Atomic Resonance Absorption Spectrophotometry , 2001 .

[69]  Kevin J. Hughes,et al.  Development and testing of a comprehensive chemical mechanism for the oxidation of methane , 2001 .

[70]  Richard A. Yetter,et al.  Comparison of global and local sensitivity techniques for rate constants determined using complex reaction mechanisms , 2001 .

[71]  J. Mantzaras,et al.  An experimental and numerical investigation of homogeneous ignition in catalytically stabilized combustion of hydrogen/air mixtures over platinum , 2002 .

[72]  A. Wagner,et al.  Rate Constants For H + O2 + M → HO2 + M in Seven Bath Gases , 2002 .

[73]  Klaus Luther,et al.  Shock wave study of the unimolecular dissociation of H2O2 in its falloff range and of its secondary reactions , 2002 .

[74]  Ian W. M. Smith,et al.  The chemical kinetics and dynamics of the prototypical reaction: OH + H2 → H2O + H , 2002 .

[75]  C. Paillard,et al.  Laminar flame velocity determination for H2–air–He–CO2 mixtures using the spherical bomb method , 2003 .

[76]  H. Olivier,et al.  Ignition of shock-heated H2-air-steam mixtures , 2003 .

[77]  C. Paillard,et al.  Elementary reaction kinetics studies of interest in H2 supersonic combustion chemistry , 2003 .

[78]  Forman A. Williams,et al.  HYDROGEN–OXYGEN INDUCTION TIMES ABOVE CROSSOVER TEMPERATURES , 2004 .

[79]  Tamás Turányi,et al.  Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms , 2004 .

[80]  Roger Atkinson,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reaxtions of Ox, HOx, NOx and SOx species , 2004 .

[81]  J. Michael,et al.  Shock tube studies using a novel multipass absorption cell: Rate constant results for OH + H2 and OH + C2H6 , 2004 .

[82]  Zhenwei Zhao,et al.  An updated comprehensive kinetic model of hydrogen combustion , 2004 .

[83]  C. Westbrook,et al.  A comprehensive modeling study of hydrogen oxidation , 2004 .

[84]  F. Egolfopoulos,et al.  An optimized kinetic model of H2/CO combustion , 2005 .

[85]  J W Sutherland,et al.  Reflected shock tube studies of high-temperature rate constants for CH3 + O2, H2CO + O2, and OH + O2. , 2005, The journal of physical chemistry. A.

[86]  D. M. Rowley,et al.  Kinetics of the gas phase HO2 self-reaction: effects of temperature, pressure, water and methanol vapours. , 2005, Physical chemistry chemical physics : PCCP.

[87]  M. Koshi,et al.  Water dependence of the HO2 self reaction: kinetics of the HO2-H2O complex. , 2005, The journal of physical chemistry. A.

[88]  Kenneth J. Witt,et al.  High temperature rate coefficient measurements of H + O2 chain-branching and chain-terminating reaction , 2005 .

[89]  A. Burcat,et al.  Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables). , 2005 .

[90]  Rate constant for the reaction of OH with H2 between 200 and 480 K. , 2006, The journal of physical chemistry. A.

[91]  B. Ruscic,et al.  Reflected shock tube studies of high-temperature rate constants for OH + NO2 --> HO2 + NO and OH + HO2 --> H2O + O2. , 2006, The journal of physical chemistry. A.

[92]  Philip John Bowen,et al.  Laminar-burning velocities of hydrogen-air and hydrogen-methane-air mixtures : An experimental study , 2006 .

[93]  N. K. Srinivasan,et al.  The thermal decomposition of water , 2006 .

[94]  Richard A. Yetter,et al.  Autoignition of H2/CO at elevated pressures in a rapid compression machine , 2006 .

[95]  Branko Ruscic,et al.  Active Thermochemical Tables: accurate enthalpy of formation of hydroperoxyl radical, HO2. , 2006, The journal of physical chemistry. A.

[96]  Forman A. Williams,et al.  Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide , 2006 .

[97]  A. Konnov,et al.  Laminar burning velocities of diluted hydrogen-oxygen-nitrogen mixtures , 2007 .